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We present exact calculations of flow polynomials F(G, q) for lattice strips of
various fixed widths Ly [ 4 and arbitrarily great lengths Lx, with several differ-
ent boundary conditions. Square, honeycomb, and triangular lattice strips are
considered. We introduce the notion of flows per face fl in the infinite-length
limit. We study the zeros of F(G, q) in the complex q plane and determine
exactly the asymptotic accumulation sets of these zeros B in the infinite-length
limit for the various families of strips. The function fl is nonanalytic on this
locus. The loci are found to be noncompact for many strip graphs with periodic
(or twisted periodic) longitudinal boundary conditions, and compact for strips
with free longitudinal boundary conditions. We also find the interesting feature
that, aside from the trivial case Ly=1, the maximal point, qcf, where B crosses
the real axis, is universal on cyclic and Möbius strips of the square lattice for all
widths for which we have calculated it and is equal to the asymptotic value
qcf=3 for the infinite square lattice.
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1. INTRODUCTION

An interesting problem in statistical mechanics is the enumeration of flows
on bonds (edges) of a given graph satisfying certain conditions. In addition
to its role in statistical physics interest, this problem is of interest in
mathematics, engineering, business, and economics. Important questions
in engineering and business concern the optimization of the flow capacity
through parts of networks and the study of where bottlenecks in flows can
occur because of limited connectivity. Here we shall focus on a particular



set of discretized flows satisfying a certain conservation condition at each
node of the network (i.e., vertex of the graph). The number of such flows
is given by a certain flow polynomial. We shall present exact calculations
of flow polynomials for a number of lattice strips with various widths Ly

and arbitrarily great lengths Lx having several different types of boundary
conditions. These exact calculations are valuable because, in general, the
enumeration of flows on graphs takes an exponentially increasing time as a
function of the number of vertices in the graph.

Consider a connected graph G=(V, E) with vertex set V and edge
(bond) set E and an abelian group H of order o(H), represented as an
additive group. For some general results, it will be necessary to allow the
possibility of multiple edges joining a given pair of vertices, and loops
(edges joining vertices to themselves), but these will usually not be present
on the strip graphs of interest here. For definiteness, we let H be the addi-
tive group of integers mod q, Zq. Denote the number of vertices and edges
as n=|V| and |E|. Assign an orientation to each of the edges in G and
consider a mapping that assigns to each of these oriented edges a nonzero
element in Zq. A flow on G is then defined as an assignment of this type
that satisfies the condition that the flow into each vertex is equal to the
flow outward from this vertex. Here the addition of two flows is defined
according to the abelian group H, so that, for H=Zq, the flow into each
vertex is equal to the flow out of this vertex mod Zq. In a fluid or electric
circuit analogy, this means that the (discretized) flow or electric current is
conserved at each vertex mod q; there are no sinks or sources. Since the
assignment of the zero element of Zq to a given oriented edge is equivalent
to the absence of the edge as far as the flow is concerned, a standard
restriction is that an admissible flow must avoid zero flow numbers on
any edge; this is termed a nowhere-zero q-flow. Henceforth, since all of
our discussion will concern nowhere-zero q-flows, we shall take ‘‘q-flow’’
to mean ‘‘nowhere-zero q-flow.’’ Some works discussing flow polynomials
include refs. 1–24.

An important problem in mathematical graph theory concerns the
enumeration of q-flows on a given (connected) graph G. Tutte showed that
there exists a polynomial in q, which we denote F(G, q), that equals this
number of q-flows. (3, 5) The existence of this polynomial relies upon the fact
that, for a given abelian group H, the number of flows on G depends only
on the order of H, o(H)=q, not on any other structural properties of H.
Clearly if G contains a bridge (isthmus), then there are no q-flows since the
fluid or electric current flowing across the bridge has no way of returning.
Thus, for any such edge that is a bridge, denoted eb, one has F(eb, q)=0.
The minimum (integer) value of q such that a bridgeless graph G admits a
q-flow is called the flow number of G, denoted f(G).
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We shall consider strips of several types of regular lattices, include the
square (sq), honeycomb (hc), and triangular (tri) lattices. The longitudinal
(transverse) direction is taken as the horizontal, x (vertical, y) direction. We
envision the strip of the triangular lattice as being formed by starting with a
strip of the square lattice and then adding edges joining, say, the lower left
and upper right vertices of each square. The strips of the honeycomb lattice
are envisioned as brick lattices. We use the symbols FBCy and PBCy for free
and periodic transverse boundary conditions and FBCx, PBCx, and TPBCx

for free, periodic, and twisted periodic longitudinal boundary conditions.
The term ‘‘twisted’’ means that the longitudinal ends of the strip are iden-
tified with reversed orientation. These strip graphs can be embedded on
surfaces with the following topologies: (i) (FBCy, FBCx): free or open strip;
(ii) (PBCy, FBCx): cylindrical; (iii) (FBCy, PBCx): cyclic; (iv) (FBCy, TPBCx):
Möbius; (v) (PBCy, PBCx): torus; and (vi) (PBCy, TPBCx): Klein bottle.

We shall introduce the notion of flows per face, fl in the limit
|V| Q .. From the basic definition one can generalize q from Z+ to R or,
indeed, C. This generalization is necessary when one calculates the zeros of
F(G, q) in the complex q plane. Using our exact calculations of F(G, q) for
a variety of families of lattice strip graphs, we shall determine exactly the
continuous accumulation set of these zeros of F(G, q) as |V| Q . for each
family of graphs G. This formal limit of the family of graphs G as |V| Q .

is denoted {G}. We shall call this accumulation set B or, when necessary to
distinguish it from other accumulation sets, Bfl. This locus is of interest
because the function fl is nonanalytic across B. We also study the
approach of the fl functions for various infinite-length strips of the square
lattice, as functions of q, to numerical values for the infinite square lattice.

In addition to its physical property as an enumeration of flows, the
flow polynomial is also of physical interest because of a well-known prop-
erty that for a planar graph G, it is equivalent (see Eq. (3.2) later) to the
chromatic polynomial of the (planar) dual graph, P(Gg, q), where P(G, q)
is defined as the number of ways of coloring the vertices of a graph G with
q colors such that no two adjacent vertices have the same color. In turn,
the chromatic polynomial is identical to the partition function of the zero-
temperature q-state Potts antiferromagnet. We comment on the relation
with previous calculations of chromatic polynomials (e.g., refs. 25–68).
Given the connection (3.2), calculations of chromatic polynomials for
families of planar lattice strip graphs immediately yield flow polynomials
for the dual graphs. We shall not recapitulate these calculations here since
they are available in the literature. Chromatic polynomials for nonplanar
graphs cannot be immediately related to flow polynomials.

Besides the role of flows in statistical mechanics, there are several addi-
tional motivations for this work. The flow polynomial is of fundamental
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importance in graph theory. As we shall discuss later, it is a special case
of the Tutte polynomial and encodes information on the connectivity of a
graph. It is also of interest from the viewpoint of statistical mechanics
because it is a special case of the q-state Potts model partition function. To
our knowledge, aside from our recent brief discussion, (69) there has not
been any study of the function fl that we introduce, and the associated
regions of analyticity of fl separated by the locus B for strips of regular
graphs. In particular, the points where B crosses or intersects the real q
axis are somewhat analogous to phase transitions in statistical mechanics,
in the sense that the fl function has different analytic forms on different
sides of B. Associated with this, one finds qualitatively different flow
behavior, as described by fl, in the different regions separated by the
locus B. While the flow polynomial of a planar graph is equivalent to the
chromatic polynomial of its dual graph, as we shall discuss further later, we
find that the locus B — Bfl for the infinite-length limit of a strip graph of
a regular lattice with periodic (or twisted periodic) longitudinal boundary
conditions is rather different from the corresponding locus of zeros BW of
the chromatic polynomial for the infinite-length limit of this strip. These
differences are especially intriguing in view of a theorem that we shall give
later, showing that for the infinite two-dimensional lattice L, Bfl(L)=
BW(Lg), where Lg is the planar lattice dual to L. In passing, we mention
the ‘‘max-flow, min-cut’’ theorem of Ford and Fulkerson, (6) which is
important for business and engineering applications. Here, we shall con-
centrate on intrinsic properties of flow polynomials and their connections
with statistical mechanics.

2. CONNECTION WITH TUTTE POLYNOMIAL AND POTTS MODEL

In this section we review the connection between the flow polynomial
and the Tutte polynomial or equivalently the Potts model partition func-
tion. Consider, as before, a connected graph G=(V, E). If an edge of G is
a loop, e=ea, then the fluid (or electric current) conservation condition is
automatically satisfied for any value of q, so that F(ea, q)=q − 1, where for
(nowhere-zero) flows the zero element of H is excluded and there are thus
q − 1 choices for the flow through the loop. We mention the standard
notation that for an edge e ¥ E, G/e is the graph obtained from G by con-
traction on e, i.e., deleting the edge e and identifying the vertices that it
joins, and G − e is the graph obtained from G by deleting e. Then for an
edge e that is not a bridge or a loop, the flow polynomial satisfies the dele-
tion-contraction relation

F(G, q)=F(G/e, q) − F(G − e, q). (2.1)
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If G is a graph and K is a field, then a general function g: G Q K is
a Tutte–Gröthendieck invariant if (1) if e ¥ E is a bridge, then g(G)=
gb g(G/e), (2) if e ¥ E is a loop, then g(G)=ga g(G/e), (3) if e ¥ E is neither
a bridge nor a loop, then

g(G)=ag(G − e)+bg(G/e), a, b ] 0 (2.2)

where gb, ga, a, and b are independent of G (see Eq. (2.5) later). From the
discussion above, it follows that F(G, q) is a Tutte–Gröthendieck invariant.
A useful property is that a Tutte–Gröthendieck invariant can be expressed
in terms of the Tutte polynomial. A spanning subgraph G −=(V, E −) of a
graph G=(V, E) is a subgraph with the same vertex set and a subset
E − ı E of the edge set of G. The Tutte polynomial of a graph G is defined
as

T(G, x, y)= C
GŒ ı G

(x − 1)k(GŒ) − k(G) (y − 1)c(GŒ) (2.3)

where k(G −) and c(G −) denote the number of components and linearly
independent circuits of G −, where, for an arbitrary graph G=(V, E),

c(G)=|E| − |V|+k(G). (2.4)

The quantity c(G −) is also called the co-rank or nullity of G −, and the
co-rank of the full graph G is called its cyclomatic number. The rank of a
graph G is defined as r(G)=|V| − k(G), so that the first exponent can be
written equivalently as k(G −) − k(G)=r(G) − r(G −). Since we deal only with
connected graphs here, k(G)=1. (We follow the standard notational usage
of x and y for the arguments of the Tutte polynomial and caution the
reader not to confuse these with the x and y directions along the strip
graphs.)

A Tutte–Gröthendieck invariant g is then given as

g(G)=a |E| − |V|+1b |V| − 1T 1G,
gb

b
,

ga

a
2 . (2.5)

In particular, for the flow polynomial, in terms of the notation above, we
have gb=0, ga=q − 1, a=−1, b=1, whence

F(G, q)=(−1) |E| − |V|+1 T(G, x=0, y=1 − q). (2.6)

Thus, the flow polynomial is a special case of the Tutte polynomial. Hence,
we can use our previous exact calculations of Tutte polynomials and Potts
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model partition functions for various families of graphs (69, 70) to derive flow
polynomials for these graphs.

From (2.3) and (2.6), it follows that the degree of F(G, q) as a poly-
nomial in q is the cyclomatic number of G,

deg F(G, q)=c(G). (2.7)

As is clear from the fact that the cyclomatic number c(G) gives the number
of linearly independent circuits, it is closely related to the number of faces
of G, f(G). In particular, for a planar graph G, using the Euler relation
|V| − |E|+f(G)=2, we have f(G)=c(G)+1.

Next, we recall the equivalence of the Tutte polynomial to the Potts
model partition function. On a lattice, or more generally, a graph G, at
temperature T, this model is defined by the partition function (10)

Z(G, q, v)= C
{sn}

e−bH (2.8)

with the Hamiltonian

H=−J C
OijP

dsi sj
(2.9)

where si=1,..., q are the spin variables on each vertex i ¥ G, and OijP
denotes pairs of adjacent vertices. We use the notation

K=
J

kBT
, v=eK − 1 (2.10)

(where there should not be any confusion between the variable v and the
edge set V or between the variable K and the number of components of
a graph k(G)) so that the physical ranges are (i) v \ 0 corresponding to
. \ T \ 0 for the Potts ferromagnet, and (ii) − 1 [ v [ 0, corresponding to
0 [ T [ . for the Potts antiferromagnet.

As before, let G −=(V, E −) be a spanning subgraph of G. Then
Z(G, q, v) can be written as (77)

Z(G, q, v)= C
GŒ ı G

qk(GŒ)ve(GŒ). (2.11)

This formula enables one to generalize q from Z+ to R or, indeed, C. From
it one also directly infers the equivalence

Z(G, q, v)=(x − 1)k(G) (y − 1)n T(G, x, y) (2.12)
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where

x=1+
q
v

(2.13)

and

y=v+1 (2.14)

so that

q=(x − 1)(y − 1). (2.15)

Combining (2.6) and (2.12), one has the relation

F(G, q)=(−1) |E| q−nZ(G, q, −q). (2.16)

Thus, the flow polynomial is a special case of the q-state Potts model given,
up to the above prefactor, by the evaluation

v=−q, i.e., K=ln(1 − q). (2.17)

For the usual case of flows with q \ 2, the condition v=−q corresponds
to a complex-temperature regime for the Potts model. In Eq. (2.17), one
would thus have K=ln(q − 1)+(2a+1) ip, a ¥ Z.

3. SOME GENERAL PROPERTIES OF FLOW POLYNOMIALS

3.1. Duality Relation with Chromatic Polynomial

Before presenting our new results, we recall some basic information
about flow polynomials that will be relevant for our work. We first discuss
a useful connection with chromatic polynomials. The chromatic polyno-
mial P(G, q) of a graph G counts the number of proper q-coloring of G,
where a proper q-coloring is a coloring of the vertices of the graph using q
colors, subject to the condition that the colors assigned to adjacent vertices
are different. The minimum (positive integral) value of q that allows one
to carry out a proper q-coloring of G is called the chromatic number of G,
q(G). The chromatic polynomial is given in terms of the Potts model par-
tition function and Tutte polynomial as

P(G, q)=Z(G, q, v=−1)=(−1)n+1 qk(G)T(G, x=1 − q, y=0). (3.1)
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Physically, the chromatic polynomial is the special case of the partition
function for the Potts antiferromagnet at zero temperature, v=−1. Now
let G be a planar graph and Gg its planar dual graph. Then

F(G, q)=q−1P(Gg, q). (3.2)

This follows directly from the expressions for the flow and chromatic
polynomials in terms of the Tutte polynomial, together with the symmetry
relation of a Tutte polynomial

T(G, x, y)=T(Gg, y, x) (3.3)

for a planar graph G. The equality (3.2) will be important for our later
discussion. Several corollaries follow from this equality. First, let G be a
bridgeless planar graph and Gg its planar dual, which thus has no loops.
Then

f(G)=q(Gg). (3.4)

(The restriction that G has no bridges is made so that flows exist on G,
and this is dual to the restriction that Gg has no loops, so that proper
q-colorings of Gg exist.)

3.2. Some Results on Existence of q-Flows

We mention here a few mathematical results on existence of q-flows
that are relevant to our work. We recall the definition of the degree or
coordination number of a vertex in a graph G as the number of edges con-
nected to this vertex. An elementary theorem states that a bridgeless graph
admits a 2-flow if and only if all of its vertex degrees are even. This can be
understood as follows. After choosing an orientation for the edges, assign
to each oriented edge the flow value 1. Since 1=−1 mod 2, and since
2n=0 mod 2, the fact that each vertex has even degree means that the
flows into each vertex are 0 mod 2. A related statement is that if a graph
has flow number f(G)=2, then, since (for the nowhere-zero flows con-
sidered here) there is only one choice of flow number for each edge, namely 1,
which is the same as − 1 mod 2, it follows that F(G, q=2)=1.

One of the most important theorems pertaining to flow polynomials
for planar graphs is the 4-flow theorem, which states that every bridgeless
planar graph has a 4-flow. This is equivalent to the celebrated 4-color
theorem, (78, 79) that every bridgeless planar graph has a coloring of faces
with four colors such that any two faces that are adjacent across a given
edge have different colors. An equivalent expression of the theorem for
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proper vertex colorings is that every loopless planar graph has a proper
4-coloring. One can inquire about the existence of flows for arbitrary, not
necessarily planar, graphs. Jaeger proved that every bridgeless graph (not
necessarily planar) has an 8-flow, (7) and subsequently Seymour proved the
stronger result that every bridgeless graph has a 6-flow. (8) An outstanding
conjecture, due to Tutte, (3) is that every bridgeless graph has a 5-flow.
These general results provide a useful background for the specific flow
numbers that we shall obtain for various planar and nonplanar families of
graphs.

3.3. Structural Properties for General Strip Graphs

Since a flow polynomial is a special case of a Tutte polynomial or
equivalently, a Potts model partition function, one can obtain several
properties of flow polynomials from corresponding properties of the latter
two polynomials. A general form for the Tutte polynomial for the strip
graphs considered here, or more generally, for recursively defined families
of graphs Gm comprised of m repeated subunits (e.g., the columns of
squares of height Ly vertices that are repeated Lx=m times to form strip
of a regular lattice of width Ly and length Lx (denoted Ly × Lx) with some
specified boundary conditions), is (70)

T(Gm, x, y)=
1

x − 1
C

NT, G, l

j=1
cG, j(lT, G, j)m (3.5)

where the terms lT, G, j, the coefficients cG, j, and the total number NT, G, l

depend on G through the type of lattice, its width, Ly, and the boundary
conditions, but not on the length. Equivalently,

Z(Gm, q, v)= C
NZ, G, l

j=1
cG, j(lZ, G, j)m (3.6)

where

NZ, G, l=NT, G, l. (3.7)

It follows from (2.6) and (3.5) that the flow polynomial for recursive
families of graphs, comprised of m repeated subgraph units, has the general
form

F(Gm, q)= C
NF, G, l

j=1
cG, j(lF, G, j)m (3.8)

Flow Polynomials and Their Asymptotic Limits for Lattice Strip Graphs 823



where again the terms lF, G, j, the coefficients cG, j, and the total number of
terms NF, G, l depend on G through the type of lattice, its width, Ly, and the
boundary conditions, but not on the length. This is related to (3.5) as
follows. The prefactor in (2.6), (−1) |E| − |V|+1 is of the form (−1)cm+1, where
c is an even or odd integer. The single factor (−1) cancels the (−1) factor
resulting from the x=0 evaluation of the overall prefactor 1/(x − 1) in
(3.5). For the cyclic lattice strips considered here, both |V| and |E| are
integer multiples of Lx=m, so their difference is of the stated form, cm.
Thus,

lF, G, j(q)=(−1)c lT, G, j(x=0, y=1 − q) (3.9)

for the subset of the lT, G, j’s that are nonzero when evaluated at x=0.
For a given type of strip graph, the sum of the coefficients in (3.8) is

denoted

CF, G= C
NF, G, l

j=1
cG, j. (3.10)

3.4. The Function fl and Associated LocusB

Given the structural property (3.8), it is natural, in the limit |V| Q .,
to define a function specifying the number of flows per face,

fl({G}, q)= lim
|V| Q .

F(G, q)1/f(G). (3.11)

For almost all of the strip graphs considered here, |V| Q . . f(G) Q ..
An exception is the circuit graph, for which F(G)=2, independent of |V|.

For reference, the reduced free energy is

f({G}, q, v)= lim
|V| Q .

ln[Z(G, q, v)1/|V|] (3.12)

a limiting function obtained from the Tutte polynomial may be written as

y({G}, x, y)= lim
|V| Q .

T(G, x, y)1/|V| (3.13)

and the ground state degeneracy per vertex of the q-state Potts antiferro-
magnet is

W({G}, q)= lim
|V| Q .

P(G, q)1/|V|. (3.14)
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Since F(G, q) is a polynomial in q of degree c(G), it follows that with this
definition,

lim
q Q .

fl({G}, q)
q

=1. (3.15)

This is the analogue to the property that

lim
q Q .

W({G}, q)
q

=1. (3.16)

Following our earlier nomenclature, (37) we denote a term l in (3.8) as
leading (=dominant) for a given value of q if it has a magnitude greater
than or equal to the magnitude of other l’s evaluated at this value of q.
In the limit |V| Q . the leading l in F(Gm, q) determines the function
fl({G}, q). The continuous locus B where fl({G}, q) is nonanalytic thus
occurs where there is a switching of dominant l’s in F and is the solution
of the equation of degeneracy in magnitude of these dominant l’s. This
is analogous to what happens for chromatic polynomials (28, 29) and, more
generally for limits of recursively defined polynomials (30, 31) (see also
ref. 32). Since a zero in F(G, q) requires a cancellation between dominant
l’s, it is clear that as |V| Q ., the continuous accumulation set B of the
zeros of F(G, q) forms the boundary curves across which this switching
occurs and hence across which fl({G}) is nonanalytic. Depending on the
family of strip graphs, the locus B may or may not separate the complex q
plane into different regions and may or may not cross the real q axis. If it
does, we denote the maximal point where it crosses this axis as qcf({G}).
We also denote the region including the positive real q axis extending down
from q=. (and terminating at qcf({G}) if the latter point exists) as
region R1. This region R1 is understood to include the maximal area to
which one can analytically continue fl({G}) from the large-q positive real
axis. For families of strip graphs where B separates the q plane into differ-
ent regions, the function fl({G}) has different analytic forms in the differ-
ent regions. For a strip graph G, in region R1,

fl({G}, q)=lR1, dom. (3.17)

where lR1, dom. denotes the dominant l in region R1.
Just as was true for these functions f, y, and W, there are two sub-

tleties in the definition (3.11): (i) which of the c(G) roots to take in the
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equation, and (ii) the fact that at certain values of q, one has the noncom-
mutativity of limits

lim
|V| Q .

lim
q Q qs

F(G, q)1/f(G) ] lim
q Q qs

lim
|V| Q .

F(G, q)1/f(G). (3.18)

We have discussed these before in the context of the definitions of W
and f. (37, 52, 70) Concerning item (i), for sufficiently large real q, in the
region R1, F(G, q) is real and positive, so one chooses the canonical root
for fl({G}), which is real and positive. However, if B separates the q plane
into different regions, then in the latter regions, there is no canonical choice
of phase that one can make for the root (3.11) and hence only the mag-
nitude |fl({G}, q)| can be determined unambiguously. For item (ii) the
noncommutativity typically occurs at special values qs=1,..., f(G) − 1.
To avoid isolated discontinuities that would otherwise result where fl
vanishes, we shall, following our earlier practice for W and f (37, 70) and
adopt, for the cases where such noncommutativity occurs, the second order
of limits in (3.18)

fl({G}, qs)= lim
q Q qs

lim
|V| Q .

F(G, q)1/f(G). (3.19)

From the duality relation (3.2) it follows that if G is a planar graph
and Gg is its planar dual, then, taking into account that the number of
faces of G is equal to the number of vertices of Gg, one has

fl({G}, q)=W({Gg}, q). (3.20)

Note that if we had defined fl({G}, q) as lim |V| Q . F(G, q)1/|V|, we would
have obtained a different relation fl({G}, q)=W({Gg}, q)p, where p is a
geometric factor depending on the particular graphs G. Since the infinite
square lattice (defined, as usual, as the limit of a finite Lx × Ly section of
this lattice where Lx Q ., Ly Q . with the ratio Ly/Lx equal to a finite
nonzero constant) is self-dual, it follows that

fl(sq, q)=W(sq, q). (3.21)

Since the infinite honeycomb and triangular lattices are the duals of each
other, we also have

fl(tri, q)=W(hc, q), fl(hc, q)=W(tri, q). (3.22)

The dual of the kagomé lattice is the diced lattice, (80, 81) and hence

fl(kag, q)=W(diced, q), fl(diced, q)=W(kag, q). (3.23)
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We next give some results for the locus B. Because of the fact that
these l’s are degenerate in magnitude on B, it follows that fl({G}, q) is
nonanalytic but continuous across B. A basic property is that B({G}) is
invariant under complex conjugation,

B({G})=B({G})g. (3.24)

This is a consequence of the property that the coefficients of each term in
the flow polynomial are real and hence the zeros of the flow polynomial are
invariant under complex conjugation. Hence, the same property holds for
their asymptotic accumulation set as |V| Q ..

We next point out another consequence of (3.2) and (3.20) for planar
graphs. For this purpose, we must append subscripts to distinguish Bfl

and BW, the respective continuous accumulation sets of zeros of the flow
and chromatic polynomials in the limit |V| Q .. Then for the |V| Q .

limits of planar graphs {G},

Bfl({G})=BW({Gg}). (3.25)

Several corollaries follow. Since the infinite square lattice (defined, as
usual, as the limit of a finite Lx × Ly section of this lattice where Lx Q .,
Ly Q . with the ratio Ly/Lx equal to a finite nonzero constant) is self-
dual,

Bfl(sq)=BW(sq). (3.26)

Since the infinite triangular and honeycomb lattices are dual to each other,
we have

Bfl(tri)=BW(hc), Bfl(hc)=BW(tri). (3.27)

Since the kagomé and diced lattices (80, 81) are dual to each other,

Bfl(kag)=BW(diced), Bfl(diced)=BW(kag). (3.28)

Now consider the lattice strip graphs G[Ly × Lx, cyc.] and
G[Ly × Lx, Mb.]. We have shown earlier (50, 52, 58) that the locus BW is the
same for the respective infinite-length limits of both of these strip graphs.
We also find that the same property holds for the Bfl computed here, but
note that this does not follow from our previous results for BW since the
Möbius strips are nonplanar, and hence one cannot apply the duality rela-
tion (3.2) and the consequent equalities (3.20) and (3.25). We also find that
for the families of strip graphs that we have calculated, Bfl is the same for
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boundary conditions corresponding to embedding on surfaces with torus
and Klein bottle topologies.

3.5. Noncompactness ofB for Classes of Strip Graphs

An important feature of the loci B — Bfl for the infinite-length limits
of the families of lattice strips with periodic (or twisted periodic) longitu-
dinal boundary conditions is that many of these are noncompact in the q
plane, containing curves that extend infinitely far away from the origin.
A fortiori, this means that for this families of graphs, as Lx Q ., there is
no upper bound on the magnitudes |q| of the zeros of the flow polynomial.
The noncompactness of Bfl for many strips of regular lattices is quite dif-
ferent from the loci BW for the corresponding strips, which, as we showed
in our previous works on chromatic polynomials, were compact in the q
plane. (37–67) Sokal has proved that for an arbitrary graph G, any zero of the
chromatic polynomial satisfies the following upper bound (53)

P(G, q)=0 2 |q| [ cD, c 4 7.964 (3.29)

where here D denotes the maximal vertex degree in G. (Indeed, our explicit
calculations for a variety of families of strip graphs yielded loci BW on
which the values of max(|q|) were considerably less than the above-men-
tioned upper bounds for the respective strips.) As was discussed in
refs. 42–44, the locus BW is noncompact if and only if the degeneracy
condition in magnitude of two or more different dominant l’s can be
satisfied for arbitrarily large |q|. Clearly, the same condition holds for Bfl.
One of us (RS), with Tsai, studied the conditions under which this could
occur and constructed several general classes of families of graphs that
were designed to satisfy this condition and thereby yield noncompact loci
BW

(37, 42–44) (see also refs. 35 and 53). As noted in refs. 42 and 43, the con-
dition that lim |V| Q . D=. is a necessary but not sufficient condition for
BW to be noncompact; an example of a graph with a maximal vertex degree
that goes to infinity as |V| Q . but with a compact BW is the wheel graph
K1+Cm. Here, Cm denotes the circuit graph, Kp denotes the complete
graph on p vertices, defined as the graph each of whose vertices is adjacent
to every other vertex, and the ‘‘join’’ G+H is defined as the graph formed
by connecting each of the vertices of G to each of the vertices of H. (The B

in this case is simply the unit circle |q − 2|=1.)
Using the duality relation (3.2) for planar graphs, one can understand

why Bfl is noncompact for the simplest nontrivial cyclic strip of the
square lattice, namely for width Ly=2. To do this, we observe that the
planar dual of this 2 × Lx cyclic strip is the circuit graph with Lx vertices,
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augmented by having an extra vertex connected by edges to each of the
vertices on the upper side of the strip and, separately, an extra vertex con-
nected by edges to each of the vertices on the lower side of the strip. This is
a special case of one of the families of graphs that were shown in refs. 42
and 43 to yield, in the Lx Q . limit, noncompact loci B, namely the family
(Kp)b+Gr, where, b means that b of the edges in the complete graph Kp are
cut, and Gr denotes an arbitrary r-vertex graph. We refer the reader to
Section 2 of ref. 42 and Section 2 of ref. 43 for further details. Specifically,
we find that the planar dual graph to the Ly=2 cyclic strip of the square
lattice is the special case of (Kp)b+Gr with p=2, b=1, signifying the
cutting of the single edge in the K2, and Gr=CLx

, the circuit graph. Using
the duality relation (3.25), we therefore prove that Bfl for the Lx Q . limit
of the cyclic Ly × Lx strip is noncompact, extending infinitely far from the
origin in the q plane. Similar arguments give insight into the noncompact-
ness of B for the wider strips considered here. Because of the noncom-
pactness of Bfl in the q plane and the property that we find that this locus
does not pass through q=0, it will often be convenient to display it in the
plane of the inverse variable

u=
1
q

(3.30)

where it is compact.
We note that not all strip graphs with periodic longitudinal boundary

conditions lead to noncompact Bfl. An example of a family with compact
Bfl is provided by the cyclic self-dual strips of the square lattice GD(Ly × Lx)
that we studied in refs. 63 and 75. Since these are self-dual planar graphs,
one can immediately use (3.25) to infer that the loci Bfl are identical to the
loci BW given in refs. 63 and 75, which are compact.

In contrast to the case with many families of strip graphs with periodic
(or twisted periodic) longitudinal boundary conditions, we find that B is
compact for the Lx Q . limit of strips with free longitudinal boundary
conditions, as will be illustrated with specific exact solutions later. This
feature is similar to our previous findings for BW. Henceforth, where no
confusion will result, we shall drop the subscript fl on Bfl.

As in our previous work (e.g., ref. 70), we note that some aspects of
the asymptotic accumulation sets of zeros of polynomials such as the Potts
model partition function or one-variable special cases such as the chroma-
tic polynomial or flow polynomial on the infinite-length limits of width-Ly

lattice strips are not smooth functions of Ly; for example, the free energy
of the full Potts model with partition function, Z(G, q, v) has a ferromag-
netic phase transition point only at zero temperature on an infinite-length,
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width Ly strip for any finite Ly, so that the limit of this phase transition
temperature as Ly Q . is also zero, whereas if one takes the thermody-
namic limit Lx Q ., Ly Q . with the ratio Ly/Lx equal to a finite con-
stant, the model has a finite ferromagnetic phase transition temperature.
This singularity at T=0, i.e., K=., corresponds to the property that B,
plotted in the plane of the complex variable e−K, for infinite-length cyclic
strips (70–73) passes the origin e−K=0. In contrast, since the Potts ferromag-
net on (infinite) 2D lattices has a finite-temperature phase transition, the
corresponding B does not pass through e−K=0. We have remarked on
similar noncommuting limits for BW in our previous work, e.g., in our cal-
culations of BW for infinite-length strips of the triangular lattice with cyclic
boundary conditions, we found that this locus always passes through
q=2, (47, 48, 59) whereas, in contrast, the locus found in ref. 34 for the infinite-
width limit of strips with cylindrical boundary conditions does not pass
through q=2. Similarly, in our calculations of BW for infinite-length strips
of the square lattice with cyclic boundary conditions, we found that this
locus always passes through q=2, whereas in our and other authors’ cal-
culations of BW for infinite-length strips of the square lattice with cylindri-
cal boundary conditions, (41, 55, 56, 60) it has been found that B does not pass
through q=2, strongly suggesting that this difference will persist in the
limit Ly Q ..

4. GENERAL STRUCTURAL RESULTS FOR CYCLIC STRIPS OF THE

SQUARE AND HONEYCOMB LATTICES

In ref. 57 it was shown that for cyclic and Möbius strips of the square
lattice of fixed width Ly and arbitrary length Lx (and also for cyclic strips
of the triangular lattice) the coefficients cj in the Tutte polynomial are
polynomials in q with the property that for each degree d there is a unique
polynomial, denoted c (d). Further, this was shown to be

c (d)=U2d(q1/2/2)= C
d

j=0
(−1) j 12d − j

j
2 qd − j (4.1)

where Un(x) is the Chebyshev polynomial of the second kind. A number of
properties of these coefficients were derived in ref. 57. We list below the
specific c (d)’s that will be needed here:

c (0)=1, c (1)=q − 1, c (2)=q2 − 3q+1, (4.2)

c (3)=q3 − 5q2+6q − 1. (4.3)
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Thus, the terms lT, Ly, j that occur in (3.5) can be classified into sets,
with the lT, Ly, j(q, v) in the d th set being defined as those terms with coef-
ficient c (d). In ref. 57 the numbers of such terms, denoted nT(Ly, d), were
calculated. Labelling the eigenvalues with coefficient c (d) as lT, Ly, d, j with
1 [ j [ nT(Ly, d), the Tutte polynomial for a cyclic strip graph of length
Lx=m can be written in the form (57)

T(Gs[Ly × m; cyc.], x, y)=
1

x − 1
C
Ly

d=0
c (d) C

nT(Ly, d)

j=1
(lT, Gs, Ly, d, j)m. (4.4)

For the Möbius strip of the square lattice the coefficients may be either
+c (d) or − c (d) and the terms are accordingly labelled as lT, Ly, d, ± , j, where
1 [ j [ nT(Ly, d, ± ). We have, (57) using the notation TPBCy for twisted
periodic b.c. in the longitudinal direction,

T(sq[Ly × m; Mb.], x, y)

=
1

x − 1
C

dmax

d=0
c (d) 5 C

nT(Ly, d, +)

j=1
(lT, Ly, d, +, j)m − C

nT(Ly, d, −)

j=1
(lT, Ly, d, −, j)m6

(4.5)

where

dmax=˛
Ly

2 for even Ly,
Ly+1

2 for odd Ly.
(4.6)

The number nT(Gs, Ly, d) of l’s with a given coefficient c (d) is (57)

nT(Gs, Ly, d)=
(2d+1)

(Ly+d+1)
1 2Ly

Ly − d
2 for Gs=sq, tri, hc; 0 [ d [ Ly

(4.7)

and zero otherwise. The total number NT, Ly, l of different terms lT, Ly, j in
Eq. (3.5) for cyclic (or Möbius) strips Gs of the square, triangular, and
honeycomb lattices is (57)

NT, Gs, Ly, l= C
Ly

d=0
nT(Gs, Ly, d) (4.8)

which was calculated to be (57, 73)

NT, Gs, Ly, l=12Ly

Ly

2 . (4.9)
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For arbitrary Ly, Eq. (4.7) shows that there is a unique lT, Ly, d correspond-
ing to the coefficient c (d) of highest degree, d=Ly, and this term is

lT, Gs, Ly, d=Ly
=1. (4.10)

Hence,

lF, sq, Ly, d=Ly
=lF, hc, Ly, d=Ly

=(−1)Ly+1 (4.11)

and

lF, tri, Ly, d=Ly
=1 (4.12)

(independent of Ly). Since this eigenvalue is unique, it is not necessary to
append another index, as with the other l’s, and we avoid this for simplicity.

From (4.4), it follows that the flow polynomial for a cyclic strip of the
Gs-type lattice also has the same type of form, i.e.,

F(Gs[Ly × m; cyc.], x, y)= C
Ly

d=0
c (d) C

nF(Gs, Ly, d)

j=1
(lF, Gs, Ly, d, j)m. (4.13)

From our earlier work on Tutte polynomials, we found that for a strip of a
given lattice type and width, the same set of l’s occurs for the case of cyclic
and Möbius boundary conditions, and this implies that the same is true
of the flow polynomial. It follows that for a strip of a given lattice type
and width, in the infinite-length limit, the accumulation sets are the same
for cyclic and Möbius boundary conditions. Let us denote the number of
lF, Gs, Ly, d, j with coefficient c (d) as nF(Gs, Ly, d). Then for this strip

CF, Gs, Ly
= C

Ly

d=0
nF(Gs, Ly, d) c (d). (4.14)

We now concentrate on cyclic strips of the square and honeycomb lattice.
Aside from degenerate cases, the dual of the cyclic strip of the square
lattice of width Ly \ 2 and length Lx is a strip of the same lattice with
width Ly − 1 and length Lx with all of the vertices along the upper and
lower sides connected to two respective external vertices. Now consider
proper colorings of this dual graph. The total number of proper q-colorings
of a transverse slice is q(q − 1)Ly. It is elementary to show that this also
holds for Ly=1. From (3.2), it follows that

CF, sq, Ly
=(q − 1)Ly. (4.15)
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A similar argument shows that (4.15) also holds for cyclic strips of the
honeycomb lattice.

We now derive the following structural theorem.

Theorem 4.1. Consider the flow polynomial for a cyclic strip graph
Gs of the square or honeycomb lattice of fixed width Ly and arbitrarily
great length Lx. For brevity, set nF(Gs, Ly, d) — nF(Ly, d). The nF(Ly, d),
d=0, 1,..., Ly are determined as follows. One has

nF(Ly, d)=0 for d > Ly, (4.16)

nF(Ly, Ly)=1 (4.17)

nF(1, 0)=0 (4.18)

with all other numbers nF(Ly, d) being determined by the two recursion
relations

nF(Ly+1, 0)=nF(Ly, 1) (4.19)

and

nF(Ly+1, d)=nF(Ly, d − 1)+nF(Ly, d)+nF(Ly, d+1)

for Ly \ 1 and 1 [ d [ Ly+1. (4.20)

Proof. We substitute for c (d) from Eq. (4.1) in Eq. (4.15). We obtain
another equation by differentiating this with respect to q once; another by
differentiating twice, and so forth up to Ly-fold differentiations. This yields
Ly+1 linear equations in the Ly+1 unknowns, nF(Ly, d), d=0, 1,..., Ly.
We solve this set of equations to get the nF(Ly, d). L

Corollary 4.1.

nF(Ly, Ly − 1)=Ly − 1. (4.21)

We note that the recursion relations (4.19), (4.20) for the numbers
nF(Ly, d) for cyclic strips of the square and honeycomb lattices are the
same as the recursion relations that we derived earlier in Eqs. (3.14) and
(3.15) of ref. 57 for the corresponding numbers nP(Ly, d) for cyclic strips
of the square and triangular lattice. Thus, the differences in the values of
nF(Ly, d) for cyclic strips of the square and honeycomb lattice and the
nP(Ly, d) for cyclic strips of the square and triangular lattice are due to the
different initial values of these quantities, i.e., (4.18) in the former case and
nP(1, 0)=nP(1, 1)=1 in the latter case.
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Table I. Table of Numbers nF(Ly, d ) and Their Sums, NF, Ly , l for Cyclic Strips of the

Square and Honeycomb Lattices. Blank Entries Are Zero

d

Ly 0 1 2 3 4 5 6 7 8 9 10 NF, Ly, l

1 0 1 1
2 1 1 1 3
3 1 3 2 1 7
4 3 6 6 3 1 19
5 6 15 15 10 4 1 51
6 15 36 40 29 15 5 1 141
7 36 91 105 84 49 21 6 1 393
8 91 232 280 238 154 76 28 7 1 1107
9 232 603 750 672 468 258 111 36 8 1 3139

10 603 1585 2025 1890 1398 837 405 155 45 9 1 8953

Corollary 4.2.

nF(Ly, 0)=
1

Ly+1
C

[(Ly+1)/2]

j=1

1Ly+1
j

21Ly − j − 1
j − 1

2 for Ly \ 2.
(4.22)

Proof. This follows immediately from the solution to our general
recursion relations (4.19), (4.20). L

Summing the nF(Ly, d) over d for a given strip with Ly, we obtain

NF, Ly, l= C
[Ly/2]

j=0

1Ly

j
21Ly − j

j
2 (4.23)

where [x] is integer part of x. This total number also applies to Möbius
strips of the square and honeycomb lattice.

A generating function for the NF, Ly, l is (82, 83)

1

`1 − 2x − 3x2
− 1= C

.

Ly=1
NF, Ly, lxLy. (4.24)

From this, it follows that the number NF, Ly, l grows exponentially fast with
the width Ly of the cyclic strip of the square or honeycomb lattice, with the
leading asymptotic behavior

NF, Ly, l ’ L−1/2
y 3Ly as Ly Q .. (4.25)
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Analogous structural results can also be given for cyclic strips of the trian-
gular lattice. We proceed to present exact calculations of flow polynomials
for a number of different lattice strips.

5. CYCLIC AND MÖBIUS STRIPS OF THE SQUARE LATTICE

5.1. General

We denote the cyclic family as sq(Ly, Lx, FBCx, PBCy) — sq(Ly, Lx, cyc.)
and the Möbius family as sq(Ly, Lx, FBCx, TPBCy) — sq(Ly, Lx, Mb.).
The cyclic and Möbius strips of the square lattice of width Ly and length
Lx have |V|=LxLy vertices and |E|=Lx(2Ly − 1), so that the prefactor in
(2.6) is (−1)Lx(Ly − 1)+1 and hence the lF, sq, Ly, d, j are given by the subset of
the lT, sq, Ly, d, j’s that are nonzero when evaluated for x=0 and y=1 − q,
multiplied by the prefactor (−1)Ly − 1. Among these families of graphs, the
lowest case, Ly=1, is just the circuit graph Cm, and the result is elemen-
tary; the only lF, sq, j is unity, and F(Cm, q)=q − 1 (independent of m). This
polynomial has only a single zero, at q=1. With the definition (3.11), we
obtain fl(q)=`q − 1. Henceforth, for brevity of notation, where no con-
fusion will result, we shall omit the F in lF, sq, Ly, d, j and write this simply as
lsq, Ly, d, j, and similarly for other lattice types.

5.2. Ly=2 Cyclic and Möbius Strips of the Square Lattice

Using the duality relation (3.2), one has

F(sq[2 × Lx=m, cyc.], q)=q−1P((K2)1+Cm, q) (5.1)

where Kp is the complete graph, G+H is the join of the graphs G and H,
(Kp)b denotes the graph obtained by removing b edges from Kp, and Cm is
the circuit graph with m vertices. In refs. 37, 42, 43, one of us (R.S.), with
Tsai, calculated the chromatic polynomial for the family (K2)1+Cm. This
immediately gives the flow polynomial, via Eq. (5.1), with

lsq, 2, 0, 1=q − 2 (5.2)

lsq, 2, 1, 1=q − 3 (5.3)

lsq, 2, 2=−1. (5.4)

Hence, we find

F(sq[2 × m, cyc.], q)=(q − 2)m+c (1)(q − 3)m+c (2)(−1)m. (5.5)
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Note that nF(2, 0)=nF(2, 1)=nF(2, 2)=1 and NF, 2, l=3, in accord with
our general structural formulas given above.

By using results that were obtained in ref. 70 for the Tutte polynomial,
we obtain

F(sq[2 × m, Mb.], q)=(q − 2)m+c (1)(q − 3)m − (−1)m. (5.6)

Thus,

nF(sq, 2, 0, +)=1, nF(sq, 2, 0, −)=1,

nF(sq, 2, 1, +)=1, nF(sq, 2, 1, −)=0
(5.7)

with nF(sq, 2, d, ± )=0 for d \ 2.
We observe that F(sq[Ly=2, Lx=m, cyc.], q) and F(sq[Ly=2,

Lx=m, Mb.], q) always have the factors (q − 1)(q − 2). For m \ 3 odd,
F(sq[Ly=2, Lx=m, cyc.], q) also has the factor (q − 3), while for m even,
F(sq[Ly=2, Lx=m, Mb.], q) also has the factor (q − 3). These results
show that

f(sq[2 × m, cyc.])=˛3 if m is even

4 if m \ 3 is odd
(5.8)

(for m=1, this flow polynomial vanishes since the graph contains a
bridge). Further,

f(sq[2 × m, Mb.])=˛4 if m is even

3 if m is odd.
(5.9)

We recall that a graph G is k-critical if P(G, q=q(G))=k!, where the
chromatic number of G, q(G), was defined above. Somewhat analogously
to the concept of k-critical graphs for proper vertex coloring and chromatic
polynomials, one may ask whether for a graph G with f(G)=k it is true
that F(G, q=f(G)) has a fixed value depending on q, i.e., for q=f(G),
the number of flows on G is a fixed number rather than growing (exponen-
tially) with |V|. Using our results we can answer the question for these
cyclic and Möbius strip graphs. First, we recall the elementary observation
that if f(G)=2, then F(G, 2)=1. From Eqs. (5.8) and (5.9) we know that
the flow number is 3 for the Ly=2 cyclic and Möbius strips of the square
lattice with even and odd Lx=m, respectively, and we find

F(sq[2 × m, cyc.], q=3)=2 for even m \ 2 (5.10)
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and

F(sq[2 × m, Mb.], q=3)=2 for odd m \ 1. (5.11)

In contrast, it is readily verified from our exact results that for the Ly=2
cyclic and Möbius strips of the square lattice with odd and even Lx=m,
respectively, for which f=4, the evaluation of the respective flow poly-
nomials at q=4 yields values that grow (exponentially) with the length of
the strip.

One way to prove Eqs. (5.10) and (5.11) is to use our explicit calcula-
tions of the flow polynomials for these families of graphs. Another way is
to write down the actual flows. For this purpose, consider a given square
on the strip. For q=3 there are two circular flows on this square, namely
those with a flow number 1 assigned to each edge, going in (i) a clockwise
or (ii) a counterclockwise manner. Clearly, a flow with flow number 1
assigned to each edge, going in a clockwise manner is equivalent to a flow
with flow number 2=−1 mod 3 assigned to each edge going in a coun-
terclockwise manner. Consider the flow of type (i) on this square. In order
to satisfy the flow conservation condition at the right-hand upper and
lower vertices, it is necessary that the flow on the neighboring square to the
right be of type (ii). Similarly, if the flow on the given square is of type (ii),
then it is necessary that the flow on the neighboring square to the right be
of type (i). Continuing in this manner along the cyclic strip, one finds a
consistent set of choices if m is even, but not if m is odd. This proves the
first part of the corollary. A similar proof with obvious changes works for
the second part.

We remark that the constructive proofs given above establish that for
q=3 the total flows can be decomposed into superpositions of circulations
around each square. Since there is a 1–1 correspondence with the flows
around a face of a graph and the face-colorings of the graph, (3) one sees
that these corollaries are equivalent to an analogous condition for the face-
coloring of the strip graph, or equivalently, the vertex coloring of the dual
graph.

In accordance with our general discussion given above, the locus B for
the Lx Q . limit of the cyclic and Möbius Ly=2 strips of the square
lattice is noncompact in the q plane. From Eq. (5.1), it follows that this
locus is identical to the one that was determined earlier for the m Q . limit
of the family P((K2)1+Cm, q) in refs. 37, 42, 43 and shown in the q plane
shown in Fig. 2 of ref. 37, or equivalently, to the locus B in the u=1/q
plane shown in Fig. 1 of ref. 43. It divides the q plane into three regions,
R i, i=1, 2, 3. Regions R1, R2, and R3 contain the respective real intervals
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3 [ q [ .; 2 [ q [ 3, and q [ 2. Region R2 is bounded on the left by the
arc of the circle

q=3+e ih, for
2pi
3

[ h [
4pi
3

(5.12)

and on the right by the arc of the circle

q=2+e ih, for −
pi
3

[ h [
pi
3

. (5.13)

Thus,

qcf=3 for {G}=sq, 2 × ., cyc./Mb. (5.14)

The two arcs (5.12) and (5.13) meet at the complex-conjugate points

qt, qg
t =

5
2

±
`3 i

2
=2+e ± ip/3 (5.15)

which are triple points on the locus B. Curves on B extend upwards from
qt and downwards from qg

t separating region R1 from R3. The curves on B

pass through the origin u=0 vertically. This follows because at u=0 there
are two l’s which are leading and are degenerate in magnitude.

In region R1, lsq, 2, 0, 1 is dominant, so that

fl(sq[2 × ., cyc.], q)=fl(sq[2 × ., Mb.], q)=q − 2 for q ¥ R1.
(5.16)

In region R2, lsq, 2, 2 is dominant, so that

|fl(sq[2 × ., cyc./Mb.], q)|=1 for q ¥ R2. (5.17)

In region R3, lsq, 2, 1, 1 is dominant, so that

|fl(sq[2 × ., cyc./Mb.], q)|=|q − 3| for q ¥ R3. (5.18)

5.3. Ly=3 Cyclic and Möbius Strips of the Square Lattice

Our general structural results yield nF(3, 0)=1, nF(3, 1)=3, nF(3, 2)
=2, nF(3, 3)=1 with the total number NF, 3, l=7. For this Ly=3 case we
find that a single term can occur with more than one degree for its coeffi-
cient; in particular, the term (2 − q) occurs with both coefficient c (1) and
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coefficient c (2). Given that this phenomenon occurs, the sum (4.23) is not,
in general, identical to the sum of distinct l’s but instead is an upper bound
on this sum. This is a type of behavior that does not occur for the Tutte or
chromatic polynomials of strips of regular planar lattices that we have
considered in previous work. For these strips, the sums of the correspond-
ing numbers nT(Ly, d) and nP(Ly, d) over d for a given value of Ly are
equal to the respective numbers of distinct l’s in the Tutte and chromatic
polynomials. From our general calculation of the Tutte polynomial in
ref. 71, we find that the nonzero terms are

lsq, 3, 0, 1=q2 − 5q+7 (5.19)

lsq, 3, 1, 1=2 − q (5.20)

lsq, 3, 1, j=
1
2 [10 − 6q+q2 ± (52 − 56q+28q2 − 8q3+q4)1/2]

for j=2, 3 (5.21)

lsq, 3, 2, 1=2 − q (5.22)

lsq, 3, 2, 2=4 − q (5.23)

lsq, 3, 3=1. (5.24)

We label the terms in the flow polynomial for the Möbius strip as
lsq, Ly, d, ± , j where d, ± means that the term has the coefficient ± c (d). For
the terms lsq, Ly, d, ± , j occurring in the flow polynomial for the Möbius strip
with width Ly=3 we find

lsq, 3, 0, +, 1=lsq, 3, 0, 1=q2 − 5q+7 (5.25)

lsq, 3, 0, +, 2=lsq, 3, 2, 1=2 − q (5.26)

lsq, 3, 0, −, 1=lsq, 3, 2, 2=4 − q (5.27)

lsq, 3, 1, +, j=lsq, 3, 1, j+1=1
2 [10 − 6q+q2 ± (52 − 56q+28q2 − 8q3+q4)1/2]

for j=1, 2 (5.28)

lsq, 3, 1, −, 1=lsq, 3, 1, 1=2 − q (5.29)

lsq, 3, 2, +, 1=lsq, 3, 3=1. (5.30)

Then

F(sq[3 × m, cyc.], q)

=(lsq, 3, 0, 1)m+c (1) C
3

j=1
(lsq, 3, 1, j)m+c (2) C

2

j=1
(lsq, 3, 2, j)m+c (3) (5.31)
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and

F(sq[3 × m, Mb.], q)

=(lsq, 3, 0, +, 1)m+(lsq, 3, 0, +, 2)m − (lsq, 3, 0, −, 1)m

+c(1)((lsq, 3, 1, +, 1)m+(lsq, 3, 1, +, 2)m − (lsq, 3, 1, −, 1)m)+c(2). (5.32)

We observe that F(sq[3 × m, cyc.], q) and F(sq[3 × m, Mb.], q) always
have the factors (q − 1)(q − 2). For m \ 3 odd, F(sq[3 × m, cyc.], q) also
has the factor (q − 3). The flow numbers for the cyclic 3 × m strip are
therefore the same as for the cyclic 2 × m strip of the square lattice, given
above in Eq. (5.8). Further, we have

f(sq[3 × m, Mb.])=3. (5.33)

We also find

F(sq[3 × m, cyc.], q=3)=˛6 if m \ 2 is even

0 if m \ 1 is odd
(5.34)

F(sq[3 × m, Mb.], q=3)=˛2 if m \ 2 is even

4 if m \ 1 is odd.
(5.35)

The locus B for Lx Q . is shown in Fig. 1. Again, this locus is non-
compact in the q plane. The locus is shown in the u plane, where it is
compact, in Fig. 2. The locus separates the q plane into several regions.
Three of these regions, Rj, j=1, 2, 3, contain intervals of the real axis,
which are q \ 3 for R1, 2 [ q [ 3 for R2, and q < 2 for R3. Hence,

qcf=3 for {G}=sq, 3 × ., cyc./Mb. (5.36)

A general feature that we find is that, aside from the trivial case Ly=1, for
which B=”, B crosses the real axis at q=2 and q=3 for all of the
widths Ly=2, 3, 4 for which we have obtained exact general formulas for
the flow polynomials (see later for the Ly=4 case). For Ly=3, the domi-
nant terms in the above-mentioned three regions are (with an appropriate
choice of branch cut for the square root) lsq, 3, 1, 2 in R1, lsq, 3, 2, 2 in R2, and
lsq, 3, 1, 2 in R3, so that

fl(sq[3 × ., cyc./Mb.], q)=(lsq, 3, 1, 2)1/2 for q ¥ R1. (5.37)

In region R2, lsq, 3, 2, 2 is dominant, so that

|fl(sq[3 × ., cyc./Mb.], q)|=|q − 4|1/2 for q ¥ R2. (5.38)
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Fig. 1. Singular locus B in the q plane for fl(sq, 3 × ., cyc./Mb., q) for the 3 × . strip of
the square lattice with cyclic or Möbius (Mb.) boundary conditions. For comparison, zeros
of the flow polynomial F(sq, 3 × Lx, cyc., q) for Lx=30 (so that this polynomial has degree
equal to c(G)=61) are also shown.

-0.2 0 0.2 0.4 0.6 0.8
Re(u)

-0.4

-0.2

0

0.2

0.4

Im(u)

Fig. 2. Singular locus B in the u plane for fl(sq, 3 × ., cyc./Mb., q) for the 3 × . strip of
the square lattice with cyclic or Möbius boundary conditions. For comparison, zeros of the
flow polynomial F(sq, 3 × Lx, cyc., q) for Lx=30 are also shown.
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In region R3, lsq, 3, 1, 2 is dominant, so that

|f(sq[3 × ., cyc./Mb.], q)|=|lsq, 3, 1, 2 |1/2 for q ¥ R3. (5.39)

There is also a pair of small complex-conjugate enclosed regions located to
the upper and lower right of the point q=3; in these regions, lsq, 3, 2, 1 is
dominant. The part of B forming the boundary between region R2 and
regions R4, Rg

4 is the vertical line segment given by Re(q)=3, − 1 [

Im(q) [ 1. Four curves on B meet at the intersection points q=± i, and as
one moves further upward above q=i, B consists of a boundary separat-
ing regions R1 and R3. This boundary bifurcates at q 4 2.6+1.8i, and as
one moves to larger values of Im(q), one enters the region R5. Corre-
spondingly, there is the complex-conjugate region Rg

5 . Expanding the
equation for the degeneracy of magnitudes of leading terms l around u=0,
we have

|1 − 5u+7u2|=|1 − 5u+8u2+O(u3)|. (5.40)

Expressing this in terms of polar coordinates, with u=re ih, and expanding
around r=0, we get the equation, to leading order in r,

r2 cos 2h=0 as r Q 0. (5.41)

The solution to this equation is

h=
(2j+1) p

4
, j=0, 1, 2, 3 (5.42)

i.e., h=± p/4, ± 3p/4, so that the curves approach u=0 with these angles.

5.4. Ly=4 Cyclic and Möbius Strips of the Square Lattice

For the flow polynomial of the cyclic 4 × m strip of the square lattice
our general results yield nF(4, 0)=3, nF(4, 1)=6, nF(4, 2)=6, nF(4, 3)
=3, nF(4, 4)=1 with the total number NF, 4, l=19. We have calculated the
flow polynomial for this case. We find that the three lF, 4, 0, j, j=1, 2, 3,
with coefficients c (0) are the roots of the equation

t3 − (q3 − 8q2+24q − 26) t2

− (q5 − 12q4+59q3 − 149q2+193q − 101) t+(q − 3)(q − 2)5=0.
(5.43)

(Here lF, 4, 0, j — lsq, 4, 0, j , etc.)
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For the l’s with coefficient c (1), we have

lF, 4, 1, 1=−(q − 2)2 (5.44)

lF, 4, 1, 2=−(q − 3)2. (5.45)

The lF, 4, 1, j for j=3, 4, 5, 6 are the roots of the equation

t4 − (q − 3)(q2 − 6q+12) t3 − (q − 2)(2q4 − 22q3+96q2 − 196q+159) t2

− (q − 3)(q6 − 16q5+105q4 − 366q3+717q2 − 750q+327) t

+(q6 − 15q5+93q4 − 306q3+565q2 − 555q+227)(q− 2)2=0. (5.46)

For the l’s with coefficient c (2),

lF, 4, 2, j=
1
2 ( − (q − 3)2 ± `(q − 3)(q3 − 5q2+11q − 11)) for j=1, 2.

(5.47)

The lF, 4, 2, j for j=3, 4, 5, 6 are roots of the equation

t4+(2q2 − 13q+22) t3+(q − 2)(q3 − 13q2+51q − 66) t2

− (2q5 − 28q4+152q3 − 402q2+521q − 265) t

+(q4 − 11q3+43q2 − 70q+41)(q − 2)2=0. (5.48)

For the l’s with coefficient c (3) we find

lF, 4, 3, 1=q − 3 (5.49)

lF, 4, 3, 2=q − (3 − `2) (5.50)

lF, 4, 3, 3=q − (3+`2) (5.51)

and, in accordance with Eq. (4.11),

lF, 4, 4=−1. (5.52)

Hence

F(sq[4 × m, cyc.], q)= C
3

j=1
(lsq, 4, 0, j)m+c (1) C

6

j=1
(lsq, 4, 1, j)m

+c (2) C
6

j=1
(lsq, 4, 2, j)m+c (3) C

3

j=1
(lsq, 4, 3, j)m+c(4)(−1)m.

(5.53)
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For the Möbius strip of the square lattice with width Ly=4 we find
nF(4, 0, +)=5, nF(4, 0, −)=4, nF(4, 1, +)=4, nF(4, 1, −)=3, nF(4, 2, +)
=2, nF(4, 2, −)=1, with

lsq, 4, 0, +, j=lsq, 4, 0, j, j=1, 2, 3 (5.54)

lsq, 4, 0, +, 4=lsq, 4, 2, 1, lsq, 4, 0, +, 5=lsq, 4, 2, 2 (5.55)

lsq, 4, 0, −, j=lsq, 4, 2, j+2, j=1, 2, 3, 4 (5.56)

lsq, 4, 1, +, j=lsq, 4, 1, j+2, j=1, 2, 3, 4 (5.57)

lsq, 4, 1, −, j=lsq, 4, 1, j, j=1, 2 (5.58)

lsq, 4, 1, −, 3=lsq, 4, 4=−1 (5.59)

lsq, 4, 2, +, 1=lsq, 4, 3, 2, lsq, 4, 2, +, 2=lsq, 4, 3, 3 (5.60)

lsq, 4, 2, −, 1=lsq, 4, 3, 1 (5.61)

so that

F(sq[4 × m, Mb.], q)= C
5

j=1
(lsq, 4, 0, +, j)m − C

4

j=1
(lsq, 4, 0, −, j)m

+c (1) 5 C
4

j=1
(lsq, 4, 1, +, j)m − C

3

j=1
(lsq, 4, 1, −, j)m6

+c (2) 5 C
2

j=1
(lsq, 4, 2, +, j)m − (lsq, 4, 2, −, 1)m6 . (5.62)

For the reader’s convenience, in the appendix of the copy of this paper on
the math-ph archive, we list specific flow polynomials for some strips of
various lattices and widths.

The locus B for Lx Q . is shown in Fig. 3. This locus is again non-
compact in the q plane, containing six curves that extend infinitely far away
from q=0. The locus separates the q plane into several regions. Three of
these regions, Rj, j=1, 2, 3, contain intervals of the real axis, which are
q \ 3 for R1, 2 [ q [ 3 for R2, and q < 2 for R3. Hence,

qcf=3 for {G}=sq, 4 × ., cyc./Mb. (5.63)

The locus B again crosses the real axis at q=2 and q=3. In region R1 the
dominant term is the root of maximal magnitude of the cubic equation
(5.43), which we denote lsq, 4, 0, jmax

, so that

fl(sq[4 × ., cyc./Mb.], q)=(lsq, 4, 0, jmax
)1/3 for q ¥ R1. (5.64)
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Fig. 3. Singular locus B in the q plane for fl(sq, 4 × ., cyc./Mb., q) for the 4 × . strip of
the square lattice with cyclic or Möbius boundary conditions. For comparison, zeros of the
flow polynomial F(sq, 4 × Lx, cyc., q) for Lx=30 are shown.

In region R2, the dominant term is the root of maximal magnitude of the
quartic equation (5.48), denoted lsq, 4, 2, jmax

, so that

|fl(sq[4 × ., cyc./Mb.], q)|=|lsq, 4, 2, jmax
|1/3 for q ¥ R2. (5.65)

In region R3, the dominant term is the root of maximal magnitude of the
other quartic equation (5.46), so that

|fl(sq[4 × ., cyc./Mb.], q)|=|lsq, 4, 1, jmax
|1/3 for q ¥ R3. (5.66)

In addition to the regions Rj, j=1, 2, 3 that contain intervals of the real
axis, there are also four complex-conjugate pairs of regions away from the
real axis, Rj, Rg

j , j=4, 5, 6, 7. These can be identified in Fig. 3 as follows:
R4 is a small ‘‘bubble’’ region containing the point q=3.1+0.6i; R6 con-
tains the point q=2+3i and extends to complex infinity; R7 contains the
point q=3i and extends to complex infinity; and R5 is a very small region
that contains the point q=2.4+1.8i.

5.5. On qcf for Cyclic/Möbius Square-Lattice Strips

Aside from the trivial case Ly=1, all of the cyclic/Möbius strips of
the square lattice that we have studied have yielded qcf=3. This is the
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same value as for the infinite square lattice (see Eq. (17.1)). We are led to
conjecture that qcf=3 for cyclic/Möbius strips of the square lattice for all
Ly \ 2. Our present finding and conjecture are related to our previous
result that qc=3 for BW for self-dual cyclic strips of the square lattice (63, 75)

for all widths considered and our consequent conjecture that this property
qc=3 holds for all cyclic self-dual strips of the square lattice. To see this
connection, we recall that the dual graph of the cyclic strip of the square
lattice with Ly \ 2 is a cyclic strip of this lattice with width Ly − 1 aug-
mented by edges joining all of the vertices on the upper and lower sides of
the strip to two respective external vertices. The latter strip is rather similar
to the cyclic self-dual strips studied in refs. 63 and 75, differing only by the
edges joining the lower vertices to the second external point. To the extent
that these lower edges do not modify qc, one would then expect that qc=3
for the family of dual graphs, which is the equivalent to the conjecture that
we make here for qcf.

Our finding that, aside from the trivial case Ly=1, B for the Ly × .

cyclic/Möbius strips of the square lattice crosses the real axis at q=2 for
Ly=2, 3, 4 suggests another conjecture, namely that this property holds
for all cyclic or Möbius strips with width Ly \ 2. It is interesting to relate
this to our earlier finding that for this class of cyclic/Möbius strip graphs
of the square lattice, BW crosses the real axis at q=0 and q=2 for all
widths 1 [ Ly [ 5 considered. (37, 48, 55, 67) One sees that for the widths Ly \ 2
considered, Bfl and BW both cross the real axis at q=2, while BW, but not
Bfl, crosses at q=0 and Bfl, but not BW, crosses at q=3. For the self-dual
strips considered in refs. 63 and 75, for which Bfl=BW, there are crossings
at q=2, 3 but not q=0. The actual behavior of Bfl=BW for the infinite
square lattice would presumably combine these features.

6. APPROACH OF fl(sq, Ly × /, q) TO fl(sq, q)

It is of interest to use our exact calculations of the flows per face,
fl(sq, Ly × ., q) for the cyclic/Möbius strips of the square lattice to study
how the values of this function approach the values for the infinite square
lattice as the strip width Ly increases. This is done in Table II for a range
of q values. For this table, we define the ratio

Rfl(sq(Ly), FBCy, q)=
fl(sq, Ly × ., q)

fl(sq, q)
. (6.1)

We use calculations of fl(sq, q)=W(sq, q) for the infinite square lattice
obtained using Monte Carlo methods from refs. 84 and 85. Again, we note
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Table II. Comparison of Values of fl(sq(Ly), FBCy, q) with fl(sq, q) for 3 [ q [ 10.

For Each Value of q, the Quantities in the Upper Line Are Identified at the Top and

the Quantities in the Lower Line Are the Values of Rfl (sq(Ly), FBCy, q). The FBCy Is

Symbolized as F in the Table

q fl(sq(1), F, q) fl(sq(2), F, q) fl(sq(3), F, q) fl(sq(4), F, q) fl(sq, q)

3 1.4142 1 1 1.1740 1.53960...
− 0.6495 0.6495 0.7625

4 1.73205 2 1.7989 1.9520 2.3370(7)
− 0.8558 0.7697 0.8353

5 2 3 2.7248 2.8827 3.2510(10)
− 0.9228 0.8381 0.8867

6 2.236 4 3.6802 3.8418 4.2003(12)
− 0.9523 0.8762 0.9146

7 2.449 5 4.6502 4.8138 5.1669(15)
− 0.9677 0.9000 0.9317

8 2.646 6 5.6286 5.7934 6.1431(20)
− 0.9767 0.9163 0.9431

9 2.828 7 6.6124 6.7779 7.1254(22)
− 0.9824 0.9280 0.9512

10 3 8 7.5998 7.7657 8.1122(25)
− 0.9862 0.9368 0.9573

that the case Ly=1 is atypical since the flow polynomial does not exhibit
exponential growth with Lx and the number of faces is fixed at two, inde-
pendent of Lx=m, in contrast to all of the strips with Ly \ 2. (Hence,
for Ly=1 we do not list the Rfl values.) For Ly \ 2 we find that fl
approaches the infinite-width value from below and this approach is not, in
general, monotonic. For a given value of Ly \ 2, the values of fl are closer
to those for the infinite lattice for larger q. In contrast, for cyclic/Möbius
strips and for a given value of Ly, W calculated for the infinite strip of
width Ly approaches the infinite-width value from above rather than from
below. (85)

7. STRIPS OF THE SQUARE LATTICE WITH TORUS AND KLEIN

BOTTLE BOUNDARY CONDITIONS

It is of interest to study flows on lattice strip graphs that have doubly
periodic boundary conditions. We carry out this study in the present
section for the square lattice strips, including both the case of torus and
Klein bottle (Kb.) topologies.
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7.1. Ly=2 Strips of the Square Lattice with Torus and

Klein Bottle B.C.

This family involves double edges on each transverse slice of the strip.
Although the chromatic polynomial is insensitive to the presence of mul-
tiple edges, the flow polynomial is sensitive to this property, as is obvious
since in general multiple edges allow more flows satisfying the conservation
conditions at each vertex. Using our results in ref. 71 we have

lsqt, 2, 0, 1=D4=q2 − 3q+3 (7.1)

where

Dm(q)=
P(Cm, q)
q(q − 1)

= C
m − 2

s=0
(−1) s 1m − 1

s
2 qm − 2 − s (7.2)

(where the second equality holds for m \ 2),

lsqt, 2, 1, 1=q2 − 4q+5 (7.3)

lsqt, 2, 2=1 (7.4)

and

F(sq[2 × Lx=m, torus], q)

=(lsqt, 2, 0, 1)m+c (1)(lsqt, 2, 1, 1)m+c (2)

=(q2 − 3q+3)m+(q − 1)(q2 − 4q+5)m+(q2 − 3q+1) (7.5)

F(sq[2 × Lx=m, Kb.], q)

=(lsqt, 2, 0, 1)m+c (1)(lsqt, 2, 1, 1)m − 1

=(q2 − 3q+3)m+(q − 1)(q2 − 4q+5)m − 1. (7.6)

We have CF, sq, Ly=2, tor=(q − 1)2 for the 2 × m torus strip and CF, sq, Ly=2, Kb.

=q − 1 for the 2 × m Klein bottle strip of the square lattice. Both flow
polynomials have (q − 1) as a factor, so that the flow number f=2 for
these families of graphs.

The locus B is noncompact in the q plane and separates this plane into
four regions. This locus is identical to the locus for BW in Fig. 5(a) of
ref. 43. The region R1 includes the real segment q > 2, while R2 contain the
segment q < 2. For this family,

qcf=2 for sq, 2 × ., torus or Kb. (7.7)
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This demonstrates that for a given type of lattice strip and for a given strip
width Ly, the imposition of different transverse boundary conditions leads,
in general, to a different locus B and, for the case of periodic longitudinal
boundary conditions where B crosses the real axis, can lead to different
values of qcf.

Above and below qcf there are two complex-conjugate phases that
extend up and down to triple points, from which c.c. curves extend
outward to complex infinity. In R1, lsqt, 2, 0, 1 is dominant, so

fl(sq[2 × ., torus/Kb.], q)=(q2 − 3q+3)1/2 for q ¥ R1 (7.8)

where the notation ‘‘torus/Kb.’’ means that the result holds for the strip
with either torus or Klein bottle boundary conditions. In region R2,
lsqt, 2, 1, 1 is dominant, so

|fl(sq[2 × ., torus/Kb.], q)|=|q2 − 4q+5|1/2 for q ¥ R2. (7.9)

In regions R3 and Rg
3 , lsqt, 2, 2 is dominant, so

|fl(sq[2 × ., torus/Kb.], q)|=1 for q ¥ R3, Rg
3 . (7.10)

7.2. Ly=3 Strips of the Square Lattice with Torus and

Klein Bottle B.C.

Here, for the Ly=3 strips of the square lattice with torus and Klein
bottle (Kb.) boundary conditions, which we denote generically as sq3t and
sq3kb, we find

NF, sq3t, l=8 (7.11)

NF, sq3kb, l=6. (7.12)

These are reductions from the numbers of different terms in the Tutte
polynomials for these strips, which are (71) NT, sq3t, l=20 and NT, sq3kb, l=12.
These may be compared with the numbers for the chromatic polynomials
for these strips (51) NP, sq3t, l=8 and NP, sq3kb, l=5. We have

F(sq[3 × m, torus], q)= C
8

j=1
csq3t, j(lsq3t, j)m (7.13)

F(sq[3 × m, Kb.], q)= C
6

j=1
csq3kb, j(lsq3kb, j)m (7.14)
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where, in order of increasing degrees of the coefficients (see below)

lsq3t, 1=q3 − 6q2+14q − 13 (7.15)

lsq3t, j=
1
2 [ − 18+16q − 6q2+q3 ± `Rsq3t] for j=2, 3 (7.16)

Rsq3t=256 − 440q+376q2 − 196q3+64q4 − 12q5+q6 (7.17)

lsq3t, 4=q − 2 (7.18)

lsq3t, 5=q − 1 (7.19)

lsq3t, 6=q − 4 (7.20)

lsq3t, 7=q − 5 (7.21)

lsq3t, 8=−1. (7.22)

In contrast to the situation with cyclic and Möbius strips, there is not a 1–1
correspondence between terms l and the coefficients that the flow poly-
nomial inherits as a special case of the Tutte polynomial; here, one of the
terms appears with two different Tutte coefficients. Specifically, the term
lsq3t, 4 appears with both the coefficient 2(q − 1) and q(q − 3), so that its net
coefficient is the sum, (q+1)(q − 2). For the coefficients we thus have

csq3t, 1=1 (7.23)

csq3t, 2=csq3t, 3=q − 1 (7.24)

csq3t, 4=(q+1)(q − 2) (7.25)

csq3t, 5=1
2 csq3t, 6=1

2 (q − 1)(q − 2) (7.26)

csq3t, 7=1
2 q(q − 3) (7.27)

csq3t, 8=q3 − 6q2+8q − 1. (7.28)

The relation of these with the c (d)’s was discussed earlier. (58, 67) The sum of
coefficients is CF, sq, Ly=3, tor=(q − 1)3 for the 3 × m torus strip.

For the Klein bottle strip we have

lsq3kb, j=lsq3t, j, j=1, 2, 3 (7.29)

lsq3kb, 4=lsq3t, 5=q − 1 (7.30)

lsq3kb, 5=lsq3t, 7=q − 5 (7.31)

lsq3kb, 6=lsq3t, 8=−1. (7.32)
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Thus the flow polynomial for the Ly=3 strip of the square lattice with
torus boundary conditions has two terms, q − 2 and q − 4, that are absent
from the flow polynomial of this lattice strip with Klein bottle boundary
conditions. Evidently, the set of terms for the strip with Klein bottle
boundary conditions is a subset of the set of terms for the strip with torus
boundary conditions.

The corresponding coefficients are

csq3kb, 1=csq3t, 1=1 (7.33)

csq3kb, j=csq3t, j=q − 1, j=2, 3 (7.34)

csq3kb, 4=csq3t, 5=1
2 (q − 1)(q − 2) (7.35)

csq3kb, 5=csq3t, 7=1
2 q(q − 3) (7.36)

csq3kb, 6=−(q − 1). (7.37)

The sum of these coefficients is CF, sq, Ly=3, Kb.=(q − 1)2. The flow numbers
of the sq, 3 × Lx strips with torus and Klein bottle (Kb.) boundary condi-
tions are

f(sq[3 × Lx, torus/Kb.])=2. (7.38)

The locus B is the same for the torus and Klein bottle strips of a given
lattice. We have proved this type of equality for BW in ref. 58 for chromatic
polynomials of torus and Klein bottle strips. The proof for the chromatic
polynomials uses the construction of a family of lattice strip graphs which
are identical to the torus and Klein bottle strips for even and odd length Lx.
The locus B is the accumulation set of the zeros in the limit Lx Q ., and
this limit can be taken over either even or odd values of Lx, which proves
the equality of the loci B for the respective Lx Q . limits of these two
types of strips. The same method of proof applies here for the flow poly-
nomials. Note that this result requires that all of the dominant terms are
the same for the strips with torus and Klein bottle boundary conditions.
This condition is satisfied.

The locus B for the Lx Q . limit of the Ly=3 square strip with torus
or Klein bottle boundary conditions is shown in the q and u planes in
Figs. 4 and 5. As is evident, B is noncompact in the q plane and separates
this plane into various regions. Three of these regions, Rj, j=1, 2, 3,
contain intervals of the real axis, which are q \ qcf for R1, 2 [ q [ qcf

for R2, and q < 2 for R3, where

qcf=2.6120932... for sq, 3 × ., torus/Kb. (7.39)
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Fig. 4. Singular locus B in the q plane for fl(sq, 3 × ., torus/Kb., q) for the 3 × . strip of
the square lattice with torus or Klein bottle boundary conditions. For comparison, zeros of
the flow polynomial F(sq, 3 × Lx, torus, q) for Lx=30 are also shown.
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Fig. 5. Singular locus B in the u plane for fl(sq, 3 × ., torus/Kb., q) for the 3 × . strip of
the square lattice with torus or Klein bottle boundary conditions. For comparison, zeros of
the flow polynomial F(sq, 3 × Lx, torus, q) for Lx=30 are also shown.
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This is the larger of the two real roots of the equation

2q4 − 19q3+71q2 − 142q+132=0 (7.40)

resulting from the condition of degeneracy in magnitude of the leading
terms |lsq3t, 7 |=|lsq3t, 2 |. The fact that qcf increases from the value 2 for
Ly=2 to approximately 2.61 for Ly=3 is in accord with the property that
as Ly Q ., qcf Q 3 (see Eq. (17.1) later). The behavior exhibited by the
strips of the square lattice with torus/Klein bottle boundary conditions is
thus that qcf progressively approaches the asymptotic value qcf=3 as Ly

increases rather than being equal to this value for each Ly \ 2 as we find
for the cyclic/Möbius strips of the square lattice.

The dominant term in region R1 is lsq3t, 2 so that

fl(sq[3 × ., torus/Kb.], q)=(lsq3t, 2)1/3 for q ¥ R1. (7.41)

This is interesting since, unlike the flow polynomials for lattice strips that
we have studied before, here the dominant term in region R1 does not have
coefficient 1. We recall that the chromatic polynomials for the recursive
strips that we have considered always have the property that the dominant
term in region R1 (including the positive real q axis) has coefficient 1. (52) In
region R2, lsq3t, 7=q − 5 is dominant, so that

|fl(sq[3 × ., torus/Kb.], q)|=|q − 5|1/3 for q ¥ R2. (7.42)

In region R3, lsq3t, 3 is dominant, so

|fl(sq[3 × ., torus/Kb.], q)|=|lsq3t, 3 |1/3 for q ¥ R3. (7.43)

The boundary on B separating regions R1 and R2 is the vertical line
segment in the q plane given by Re(q)=qcf as given above in Eq. (7.39)
and − 1.04 [ Im(q) M 1.04. This line segment ends at the complex-conju-
gate set of triple points at q=qcf ± 1.04i. Going vertically upward and
downward away from the real axis along this direction, one passes into two
complex-conjugate regions, R4 and Rg

4 in which lsq3t, 1 is dominant, so that

|fl(sq[3 × ., torus/Kb.], q)|=|q3 − 6q2+14q − 13|1/3 for q ¥ R4, Rg
4 .

(7.44)

At the point u=0, four curves on B intersect. Let us express the terms
lsq3t, j in terms of the variable u=1/q and defining the scaled terms
lsq3t, j, u=u3lsq3t, j. With appropriate choices of branch cuts for the square
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root, the equation of degeneracy of magnitude of leading terms in the
vicinity of u=0, when expanded in a small u series, is

|1 − 6u+15u2+O(u3)|=|1 − 6u+14u2+O(u3)|. (7.45)

Using polar coordinates u=re ih, this reduces to Eq. (5.41) as r Q 0, which
shows that the curves approach u=0 with the angles h=± p/4, ± 3p/4.

8. SELF-DUAL STRIPS OF THE SQUARE LATTICE

In refs. 63 and 75 we calculated chromatic polynomials and Tutte
polynomials for families of planar self-dual strips of the square lattice with
free and cyclic longitudinal boundary conditions, denoted, respectively,
GD(Ly × Lx, cyc.) and GD(Ly × Lx, free). Applying the relation (3.2), we
infer, in particular, that

F(GD, q)=q−1P(GD, q) (8.1)

where GD refers to any of these graphs. Hence,

qcf=qc=3 for GD families. (8.2)

Similarly, the loci B are the same for the Lx Q . limits of the flow and
chromatic polynomials for these families of graphs. A particular property is
that, in contrast to the loci B for the other families studied here, these are
compact in the q plane.

9. STRIPS OF THE SQUARE LATTICE WITH FREE BOUNDARY

CONDITIONS

It is of interest to compare the flow polynomials for strips with perio-
dic or twisted periodic longitudinal boundary conditions to those with free
boundary conditions. These flow polynomials may be calculated directly by
iterative application of the deletion-contraction property or via the chro-
matic polynomials of the dual graphs, or as special cases of Tutte polyno-
mials. We list some relevant results. Clearly for a tree graph, the flow
polynomial vanishes. For strips with free longitudinal boundary conditions,
we shall use a different labelling convention, viz., m=Lx − 1, than the
convention m=Lx used for strips with periodic longitudinal boundary
conditions; in both cases, m refers to the length of the respective strips in
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terms of edges with Lx being the length in terms of vertices. For m \ 1 we
have

F(sq[Ly=2, Lx=m+1, free], q)=(q − 1)(q − 2)m − 1 (9.1)

F(sq[Ly=3, Lx=m+1, free], q)=(q − 1)(q − 2)(q2 − 5q+7)m − 1. (9.2)

Thus, NF, sq, Ly, l=1 for Ly=2, 3. For both of these families of strip graphs,
the continuous accumulation set of zeros is the empty set since the zeros
are discrete.

It is convenient to use a generating function to give the results for the
cases Ly \ 4. This is similar to the generating functions that were utilized
for chromatic polynomials in refs. 39 and 41 and our subsequent works.
For the strip of type G, length Lx=m+1, we write

C(G, q, z)= C
.

m=0
F(Gm, q) zm (9.3)

where

C(G, q, z)=
N(G, q, z)
D(G, q, z)

(9.4)

with

N(G, q, z)= C
dN

j=0
AG, j(q) z j (9.5)

and

D(G, q, z)=1+ C
dD

j=1
bG, j(q) z j (9.6)

N(sq[Ly=4, free], q, z)=(q − 1)(q − 2) z[(q − 2) − (q − 1)(q − 3) z]
(9.7)

D(sq[Ly=4, free], q, z)=1 − (q3 − 8q2+24q − 26) z

− (q5 − 12q4+59q3 − 149q2+193q − 101) z2

+(q − 2)5 (q − 3) z3. (9.8)

Thus, NF, sq, Ly=4, free, l=3.
The locus B for the Lx Q . limit, shown in Fig. 6, is compact and

consists of complex-conjugate pairs of arcs together with a self-conjugate
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Fig. 6. Singular locus B in the q plane for fl(sq, 4 × ., free, q) for the 4 × . strip of the
square lattice with free boundary conditions. For comparison, zeros of the flow polynomial
F(sq, 4 × Lx, free, q) for Lx=20 are also shown.

arc that crosses the real axis at q 4 2.6252. This is similar to what we found
for the loci BW for strips with free boundary conditions in earlier
work. (39, 41) Although B crosses the real axis for this strip, it is not
guaranteed to cross the real axis when one uses free longitudinal boundary
conditions, as will be illustrated by an explicit example later.

We have also calculated the generating function for F(sq[Ly=5, Lx,
free], q) and find that NF, sq, Ly=5, free, l=4, with

Asq, 5, free, 0=0 (9.9)

Asq, 5, free, 1=(q − 1)(q − 2)3 (9.10)

Asq, 5, free, 2=−(q − 1)(q − 2)(q5 − 8q4+22q3 − 20q2 − 5q+9) (9.11)

Asq, 5, free, 3=(q − 1)(q − 2)(2q7 − 29q6+178q5 − 598q4+1186q3

− 1387q2+884q − 237) (9.12)

Asq, 5, free, 4=−(q − 1)(q − 2)4 (q6 − 14q5+79q4 − 229q3+359q2 − 288q+91)
(9.13)

bsq, 5, free, 1=−q4+10q3 − 44q2+97q − 88 (9.14)

bsq, 5, free, 2=−q7+19q6 − 156q5+726q4 − 2085q3+3711q2 − 3790q+1708
(9.15)
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bsq, 5, free, 3=(q − 3)(2q8 − 39q7+337q6 − 1685q5+5335q4

− 10959q3+14264q2 − 10753q+3595) (9.16)

bsq, 5, free, 4= − (q − 2)2 (q9 − 23q8+235q7 − 1401q6+5376q5 − 13785q4

+23647q3 − 26198q2+17033q − 4964). (9.17)

The locus B is comprised of arcs and is similar to, although more compli-
cated than, that for the Ly=4 strip. The deletion-contraction property
(2.1) can also be used in an interative manner to calculate flow polynomials
for strips with greater widths.

10. STRIPS OF THE SQUARE LATTICE WITH CYLINDRICAL

BOUNDARY CONDITIONS

For strips of the square lattice with cylindrical boundary conditions
we calculate, for m \ 1,

F(sq[Ly=2, Lx=m+1, cyl.], q)

=(q − 1)(q − 2)2 (D4)m − 1

=(q − 1)(q − 2)2 (q2 − 3q+3)m − 1 (10.1)

F(sq[Ly=3, Lx=m+1, cyl.], q)

=(q − 1)(q − 2)(q − 3)2 (q3 − 6q2+14q − 13)m − 1. (10.2)

For both of these families of strip graphs, the continuous accumulation set
of zeros is empty since the zeros are discrete.

The coefficients of the generating function for F(sq[Ly=4, Lx,
cyl.], q) are

Asq, 4, cyl, 0=q − 1 (10.3)

Asq, 4, cyl, 1=−(q − 1)(3q3 − 18q2+35q − 18) (10.4)

Asq, 4, cyl, 2=(q − 1)2 (q − 3)(q3 − 7q2+13q − 9) (10.5)

bsq, 4, cyl, 1=−q4+8q3 − 29q2+55q − 46 (10.6)

bsq, 4, cyl, 2=q6 − 12q5+61q4 − 169q3+269q2 − 231q+85. (10.7)

Thus, NF, sq, Ly=4, cyl, l=2, and the terms are

lF, sq, Ly=4, cyl, j=
1
2 [q4 − 8q3+29q2 − 55q+46 ± `Rsq4c] (10.8)
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where

Rsq4c=q8 − 16q7+118q6 − 526q5+1569q4 − 3250q3+4617q2 − 4136q+1776.
(10.9)

The denominator D of the generating function is the same as that for the
generating function for chromatic polynomials of the 4 × Lx strip of the
square lattice with cylindrical boundary conditions, and consequently, in
the Lx Q . limit, the locus B is also the same as the locus BW for the
4 × . square-lattice strip with cylindrical boundary conditions, shown as
Fig. 3(a) in ref. 41. This locus is compact and consists of a complex-conju-
gate pair of arcs together with a self-conjugate arc that crosses the real axis
(at q 4 2.30) and a very short line segment emanating outward from this
crossing point on the real axis. The value of qcf, which is given by the right-
hand end of the very short line segment, occurs at q 4 2.35. The locus does
not separate the q plane into different regions.

The coefficients of the generating function for F(sq[Ly=5, Lx,
cyl.], q) are

Asq, 5, cyl, 0=q − 1 (10.10)

Asq, 5, cyl, 1=−(q − 1)(4q4 − 35q3+115q2 − 157q+62) (10.11)

Asq, 5, cyl, 2=−(q − 1)2 (q6 − 7q5 − q4+133q3 − 458q2+645q − 348) (10.12)

bsq, 5, cyl, 1=−q5+10q4 − 46q3+124q2 − 198q+148 (10.13)

bsq, 5, cyl, 2=q8 − 19q7+159q6 − 767q5+2339q4

− 4627q3+5800q2 − 4212q+1362. (10.14)

Thus, Nsq, Ly=5, cyl, l=2. As was the case with Ly=4, the denominator D of
the generating function is the same as that for the generating function for
chromatic polynomials of the 5 × Lx strip of the square lattice with cylin-
drical boundary conditions, and consequently, in the Lx Q . limit, the
locus B is also the same as the locus BW for the 5 × . square-lattice strip
with cylindrical boundary conditions, shown as Fig. 2 of ref. 55. As before,
B is compact and consists of five arcs, four of which form two complex-
conjugate pairs and one of which is self-conjugate. The self-conjugate arc
crosses the real axis at qcf 4 2.69168. The endpoints of the arcs occur at the
ten zeros of the polynomial b2

sq, 5, cyl, 1 − 4bsq, 5, cyl, 2, which square roots that
occur in lsq, Ly=5, cyl, j have branch point singularities. The arcs comprising B

do not separate the q plane into different regions. As mentioned above, the
deletion-contraction property (2.1) can also be used in an interative manner
to calculate flow polynomials for strips with greater widths.
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11. Ly=2, 3 CYCLIC STRIP OF THE HONEYCOMB LATTICE

The Ly=2 cyclic or Möbius strip of the honeycomb lattice can be
constructed by starting with the Ly=2 cyclic or Möbius strip of the square
lattice and inserting degree-2 vertices on each horizontal (longitudinal)
edge. Because the insertion of degree-2 vertices does not affect the flow
polynomial, it follows that, for BCx=FBCx, PBCx, TPBCx, and Ly=2,
we have

F(hc[2 × Lx, FBCy, BCx], q)=F(sq[2 × Lx, FBCy, BCx], q) (11.1)

and

fl(hc[2 × ., cyc./Mb.], q)=fl(sq[2 × ., cyc./Mb.], q) (11.2)

where the expressions for F(sq, 2 × Lx, FBCy, BCx, q) with the various
longitudinal boundary conditions were given above.

For Ly=3 we calculate

F(hc[3 × m, cyc.], q)

=(lhc, 3, 0, 1)m+c (1) C
3

j=1
(lhc, 3, 1, j)m+c (2) C

2

j=1
(lhc, 3, 2, j)m+c(3) (11.3)

where

lhc, 3, 0, 1=(q − 3)2 (11.4)

lhc, 3, 2, j=
1
2 [7 − 2q ± `13 − 4q] for j=1, 2 (11.5)

lhc, 3, 3=1 (11.6)

and the lhc, 3, 1, j, j=1, 2, 3 are the roots of the equation

t3 − (q − 3)(q − 5) t2 − (q − 3)2 (2q − 5) t − (q − 2)2 (q − 3)2=0. (11.7)

Hence,

f(hc[3 × m, cyc.])=4. (11.8)

The locus B for the Lx Q . limit of the cyclic or Möbius Ly=3 strips
of the honeycomb lattice is shown in the q plane in Fig. 7 and in the u
plane in Fig. 8. We have

qcf=
5+`5

2
=3.61803... for hc, 3 × ., cyc./Mb. (11.9)
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Fig. 7. Singular locus B in the q plane for fl(hc, 3 × ., cyc./Mb., q) for the 3 × . strip of
the honeycomb lattice with cyclic or Möbius boundary conditions. For comparison, zeros of
the flow polynomial F(hc, 3 × Lx, cyc., q) for Lx=30 are also shown.
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Fig. 8. Singular locus B in the u plane for fl(hc, 3 × ., cyc./Mb., q) for the 3 × . strip of
the honeycomb lattice with cyclic or Möbius boundary conditions. For comparison, zeros of
the flow polynomial F(hc, 3 × Lx, cyc., q) for Lx=30, expressed in terms of u, are also shown.
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This is already within 10% of the asymptotic value qcf=4 for the 2D
honeycomb lattice (see Eq. (17.2) later). The locus B is again noncompact
in the q plane, passing through the origin of the u plane. The locus sepa-
rates the q plane into several regions, which contain intervals of the real
axis: Rj, j=1, 2, 3, 4, which include the respective intervals (1) q \ qcf,
(2) 3 [ q [ qcf, (3) 2 [ q [ 3, and (4) q [ 2. In region R1, the dominant
term is the root of the cubic equation (11.7) with maximal magnitude,
which we denote as lhc, 3, 1, 1, so that

fl(hc[3 × ., cyc./Mb.], q)=(lhc, 3, 1, 1)1/2 for q ¥ R1. (11.10)

In region R2, lhc, 3, 3=1 is dominant, so

|fl(hc[3 × ., cyc./Mb.], q)|=1 for q ¥ R2. (11.11)

In region R3, lhc, 3, 2, 1 is dominant, so

|fl(hc[3 × ., cyc./Mb.], q)|=| 1
2 (7 − 2q+`13 − 4q)|1/2 for q ¥ R3.

(11.12)

In region R4 the maximal root of the cubic equation (11.7) is dominant,
with a result analogous to (11.10) for fl. In regions R5 and Rg

5 the domi-
nant l is lhc, 3, 0, 1, so that

|fl(hc[3 × ., cyc./Mb.], q)|=|q − 3| for q ¥ R5, Rg
5 . (11.13)

The curves cross the origin of the u plane with the angles ± p/4 and 3p/4.

12. Ly=2 CYCLIC STRIP OF THE TRIANGULAR LATTICE

Next, we consider strips of the triangular lattice. For the Ly=2 cyclic
strip we calculate

ltri, 2, 0, 1=(q − 2)2 (12.1)

ltri, 2, 1, j=
1
2 [6 − 4q+q2 ± (q − 2) `8 − 4q+q2] (12.2)

where j=1, 2 for the ± sign before the square root, and

ltri, 2, 2=1. (12.3)

Then

F(tri[2 × m, cyc.], q)=(q − 2)2m+c (1)[(ltri, 2, 1, 1)m+(ltri, 2, 1, 1)m]+c(2).
(12.4)
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Thus, NF, tri, Ly=2, cyc., l=4, and for the cyclic strip of the triangular lattice of
width Ly=2,

nF(tri, 2, 0)=1, nF(tri, 2, 1)=2, nF(tri, 2, 2)=1 (12.5)

with nF(tri, 2, d)=0 for d \ 3. For this strip the sum of coefficients is

CF, tri, Ly=2=q(q − 1) for tri, 2 × Lx, cyc. (12.6)

Using our exact solution, we observe that F(tri[2 × m, cyc.], q) has
only the common factor (q − 1) and hence

f(tri[2 × m, cyc.])=2. (12.7)

Further, we find that

f(tri[2 × m, Mb.])=3. (12.8)

The locus B for the cyclic and Möbius Ly=2 strips of the triangular
lattice is shown in the q plane in Fig. 9 and in the u plane in Fig. 10. This
locus is noncompact in the q plane and divides this plane into four regions,
R1, R2, and the complex-conjugate regions R3 and Rg

3 . Regions R1 and R2
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Fig. 9. Singular locus B in the q plane for fl(tri, 2 × ., cyc./Mb., q) for the 2 × . strip of
the triangular lattice with cyclic or Möbius boundary conditions. For comparison, zeros of the
flow polynomial F(tri, 2 × Lx, cyc., q) for Lx=30 (so that this polynomial has degree 61) are
also shown.

862 Chang and Shrock



-0.2 0 0.2 0.4 0.6 0.8
Re(u)

-0.4

-0.2

0

0.2

0.4

Im(u)

Fig. 10. Singular locus B in the u plane for fl(tri, 2 × ., cyc./Mb., q) for the 2 × . strip of
the triangular lattice with cyclic or Möbius boundary conditions. For comparison, zeros of the
flow polynomial F(tri, 2 × Lx, cyc., q) for Lx=30, expressed in terms of u, are also shown.

contain the respective real intervals q > 2 and q < 2 and are contiguous
along a vertical line segment extending from q=2+i to 2 − i. Triple points
on B occur at these endpoints q=2 ± i. Evidently,

qcf=2 for tri, 2 × ., cyc./Mb. (12.9)

Along the vertical line segment from 2+i to 2 − i, |ltri, 2, 1, 1 |=|ltri, 2, 1, 2 |
=ltri, 2, 2=1. Regions R3 and Rg

3 extend upward and downward, respec-
tively, from the complex-conjugate triple points at q=2+i and q=2 − i.
In region R1, ltri, 2, 1, 1 is dominant so that

fl(tri[2 × ., cyc.], q)=f(tri[2 × ., Mb.], q)=(ltri, 2, 1, 1)1/2 for q ¥ R1.
(12.10)

In region R2, ltri, 2, 1, 2 is dominant, so that

|fl(tri[2 × ., cyc./Mb.], q)|=|ltri, 2, 1, 2 |1/2 for q ¥ R2. (12.11)

In regions R3 and Rg
3 , ltri, 2, 0, 1 is dominant, so that

|fl(tri[2 × ., cyc./Mb.], q)|=|q − 2| for q ¥ R3, Rg
3 . (12.12)

Some special values include fl(2)=1, |fl(1)|=[(3+`5)/2]1/2, and |fl(0)|
=[3+2 `2]1/2.
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To show that B passes through u=0, we calculate the corresponding
scaled terms ltri, 2, d, j, u=ltri, 2, d, j/q2 with u=1/q and see that the degener-
acy condition of dominant ltri, 2, d, j, u’s has a solution at u=0. The dominant
ltri, 2, d, j, u’s in the vicinity of u=0 are

ltri, 2, 0, 1, u=(1 − 2u)2 (12.13)

ltri, 2, 1, 1, u=1
2 [1 − 4u+6u2+(1 − 2u) `1 − 4u+8u2]. (12.14)

For u Q 0, the latter term has the Taylor series expansion

ltri, 2, 1, 1, u=1 − 4u+6u2 − u4+O(u5). (12.15)

Thus, in the same way as before, introducing polar coordinates and
expanding the equation of the degeneracy of magnitudes of leading terms
in the vicinity of u=0 yields the condition r2 cos 2h=0, thereby showing
that four branches of B approach the origin of the u plane at the angles
given by (5.42), i.e., h=± p/4 and h=± 3p/4.

13. Ly=3 CYCLIC STRIP OF THE TRIANGULAR LATTICE

For the Ly=3 cyclic strip of the triangular lattice we find the follow-
ing results:

ltri, 3, 0, j=
1
2 [q4 − 7q3+21q2 − 33q+23

± (q8 − 14q7+91q6 − 360q5+949q4 − 1708q3

+2047q2 − 1486q+497)1/2] j=1, 2 (13.1)

ltri, 3, 1, j=q2 − 4q+5. (13.2)

The ltri, 3, 1, j for j=2, 3, 4 are the roots of the equation

t3 − (q4 − 7q3+22q2 − 37q+30) t2

+(q6 − 11q5+52q4 − 134q3+200q2 − 168q+69) t

− (2q4 − 15q3+42q2 − 51q+24)=0 (13.3)

ltri, 3, 2, 1=q2 − 3q+3 (13.4)

ltri, 3, 2, j=
1
2 [q2 − 5q+9 ± (q4 − 10q3+43q2 − 90q+73)1/2], j=2, 3

(13.5)

ltri, 3, 3=1. (13.6)
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Hence, NF, tri, Ly=3, cyc., l=10, nF(tri, 3, 0)=2, nF(tri, 3, 1)=4, nF(tri, 3, 2)
=3, nF(tri, 3, 3)=1, and

F(tri[3 × m, cyc.], q)

= C
2

j=1
(ltri, 3, 0, j)m+c (1) C

4

j=1
(ltri, 3, 1, j)m+c (2) C

3

j=1
(ltri, 3, 2, j)m+c (3).

(13.7)

Using our exact result (13.7) we observe that F(tri[3 × m, cyc.], q) has
only the common factor (q − 1), so that

f(tri[3 × m, cyc.])=2. (13.8)

This can also be derived as a corollary of the basic theorem discussed in
Section 3.2, that a bridgeless graph admits a 2-flow if and only if all of its
vertex degrees are even; here all of the vertices of the tri[3 × m, cyc.] are
even.

For the cyclic strip of the triangular lattice of width Ly=3, the sum of
coefficients is

CF, tri, Ly=3=q(q − 1)2 for tri, 3 × Lx, cyc. (13.9)

The locus B for the cyclic and Möbius Ly=3 strips of the triangular
lattice is shown in the q plane in Fig. 11. This locus is noncompact in the q
plane, containing eight curves that extend infinitely far away from q=0.
The locus separates the q plane into several regions. Three of these regions,
Rj, j=1, 2, 3, contain interval of the real axis, which are q \ qcf for R1,
and 2 [ q [ qcf for R2, and q < 2 for R3, where

qcf=2.213548 for tri, 3 × ., cyc./Mb. (13.10)

This is within about 15% of the asymptotic value qcf 4 2.618 for the 2D
triangular lattice (see Eq. (17.3) later). In regions R1 and R3, the dominant
term is the root of maximal magnitude of the cubic equation (13.3), which
we denote ltri, 3, 1, jmax

, so that

fl(tri[3 × ., cyc./Mb.], q)=(ltri, 3, 1, jmax
)1/4 for q ¥ R1. (13.11)

In region R2, ltri, 3, 2, 2 is dominant, so that

|fl(tri[3 × ., cyc./Mb.], q)|=|ltri, 3, 2, 2 |1/4 for q ¥ R2. (13.12)
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Fig. 11. Singular locus B in the q plane for fl(tri, 3 × ., cyc./Mb., q) for the 3 × . strip of
the triangular lattice with cyclic or Möbius boundary conditions. For comparison, zeros of the
flow polynomial F(tri, 3 × Lx, cyc., q) for Lx=20 (so that this polynomial has degree 81) are
also shown.

In region R3,

|fl(tri[3 × ., cyc./Mb.], q)|=|ltri, 3, 1, jmax
|1/4 for q ¥ R3. (13.13)

In addition to the regions Rj, j=1, 2, 3 that contain intervals of the real
axis, there are also three complex-conjugate pairs of regions away from
the real axis, Rj, Rg

j , j=4, 5, 6. These can be identified in Fig. 11 as
follows: R4 contains the point q=4+3i and extends to complex infinity;
R5 contains the point q=1.5+3i and extends to complex infinity; and R6

contains the point q=−1+3i and extends to complex infinity.

14. Ly=2 STRIP OF THE TRIANGULAR LATTICE WITH TOROIDAL

AND KLEIN BOTTLE BOUNDARY CONDITIONS

For the Ly=2 strips of the triangular lattice with torus and Klein
bottle boundary conditions, we find that

ltri2t, j=
1
2 [11 − 19q+15q2 − 6q3+q4 ± (129 − 446q+727q2 − 722q3

+479q4 − 218q5+66q6 − 12q7+q8)1/2] j=1, 2 (14.1)

ltri2t, j=
1
2 [14 − 20q+15q2 − 6q3+q4 ± (212 − 600q+852q2 − 776q3

+493q4 − 220q5+66q6 − 12q7+q8)1/2] j=3, 4 (14.2)
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and

ltri2t, 5=2. (14.3)

The corresponding coefficients are

ctri2t, j=1 j=1, 2 (14.4)

ctri2t, j=q − 1 j=3, 4 (14.5)

and

ctri2t, 5=1
2 q(q − 3). (14.6)

It follows that

F(tri[2 × m, torus], q)

=(ltri2t, 1)m+(ltri2t, 2)m+(q − 1)[(ltri2t, 3)m+(ltri2t, 4)m]+1
2 q(q − 3) 2m.

(14.7)

The locus B for the torus and Klein bottle Ly=2 strips of the trian-
gular lattice is shown in the q plane in Fig. 12 and in the u plane in Fig. 13.
This locus is noncompact in the q plane, and divides this plane into various
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Fig. 12. Singular locus B in the q plane for fl(tri, 2 × ., torus/Kb., q) for the 2 × . strip of
the triangular lattice with torus or Klein bottle boundary conditions. For comparison, zeros of
the flow polynomial F(tri, 2 × Lx, torus, q) for Lx=20 are also shown.
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Fig. 13. Singular locus B in the u plane for fl(tri, 2 × ., torus/Kb., q) for the 2 × . strip of
the triangular lattice with torus or Klein bottle boundary conditions. For comparison, zeros
of the flow polynomial F(tri, 2 × Lx, torus, q) for Lx=20, expressed in terms of u, are also
shown.

regions. Three of these regions, Rj, j=1, 2, 3, contain intervals of the real
axis, which are q \ qcf for R1, 2 [ q [ qcf for R2, and q < 2 for R3, where

qcf=2.307144568... for tri, 2 × ., torus/Kb. (14.8)

The dominant terms in regions Rj, j=1, 2, 3 are ltri2t, 1, ltri2t, 5, and ltri2t, 3

so that

fl(tri[2 × ., torus/Kb.], q)=(ltri2t, 1)1/4 for q ¥ R1 (14.9)

|fl(tri[2 × ., torus/Kb.], q)|=21/4 for q ¥ R2 (14.10)

|fl(tri[2 × ., torus/Kb.], q)|=|ltri2t, 3 |1/4 for q ¥ R3. (14.11)

There are also three complex-conjugate pairs of regions, Rj, Rg
j , j=4, 5, 6.

These can be identified in Fig. 12 as follows: R4 is a ‘‘bubble’’ region
centered at the point q=1.8+1.5i; R5 is a small ‘‘bubble’’ region centered
at the point q=1.2+i; and R6 contains the point q=2i and extends to
complex infinity. The dominant terms in regions Rj, j=4, 5, 6 are ltri2t, 1,
ltri2t, 5 and ltri2t, 1.

To show that B passes through u=0, we calculate the corresponding
scaled terms ltri2t, j, u=ltri2t, j/q4 with u=1/q and see that the degeneracy
condition of dominant ltri2t, j, u’s has a solution at u=0. The dominant
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terms in the vicinity of u=0 are ltri2t, 1, u and ltri2t, 3, u. For u Q 0, these terms
have the Taylor series expansion

ltri2t, 1, u=1 − 6u+15u2 − 19u3+O(u4) (14.12)

ltri2t, 3, u=1 − 6u+15u2 − 20u3+O(u4). (14.13)

Hence, introducing polar coordinates u=re ih, the condition of degeneracy
of magnitudes in the vicinity of u=0 yields the condition

r3 cos h(3 − 4 cos2h)=0 as r Q 0. (14.14)

This proves that four branches of B approach the origin of the u plane at
the angles

h=
(2k+1) p

6
, for 1 [ k [ 6 (14.15)

i.e., at h=± p/6, h=± p/2 and h=± 5p/6.

15. STRIPS OF THE TRIANGULAR LATTICE WITH FREE

BOUNDARY CONDITIONS

In this section, we give the flow polynomials of the triangular lattice
with free boundary conditions. First, we have

F(tri[Lx=2, Lx=m, free], q)=(q − 1)(q − 2)2(m − 1)+1. (15.1)

For the cases Ly \ 3, we give the result in term of generating functions as
shown from Eq. (9.3) to Eq. (9.6). For F(tri[Ly=3, Lx=m, free], q) we
calculate

N(tri[Ly=3, free], q, z)

=(q − 1)(q − 2)2 z[(q − 2)+(q − 1)3 z − (q − 1)2 z2] (15.2)

D(tri[Ly=3, free], q, z)

=1 − (q4 − 7q3+21q2 − 33q+23) z+2(q − 2)2 z2. (15.3)

There are thus NF, tri, Ly=3, free, l=2 terms,

ltri, Ly=3, free, j=
1
2 [q4 − 7q3+21q2 − 33q+23 ± `Rt3f], j=1, 2

(15.4)
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where

Rt3f=q8 − 14q7+91q6 − 360q5+949q4 − 1708q3+2047q2 − 1486q+497.
(15.5)

The locus B for the Lx Q . limit of this strip is shown in Fig. 14. This
locus is compact, consisting of two pairs of complex-conjugate arcs that do
not separate the q plane into different regions and do not cross the real
axis, so that no qcf is defined. The eight endpoints of the arcs occur at the
eight zeros of Rt3f, where the square root in (15.4) have branch point sin-
gularities. Thus, we find that the loci B for all of the lattice strips that we
have considered with free longitudinal boundary conditions (which include
the strips with free and cylindrical boundary conditions) are compact.
These thus contrast with the behavior of B for many of the strips with
periodic or twisted periodic longitudinal boundary conditions, for which B

is noncompact.
We have also calculated the generating functions for F(tri[Ly, Lx=m,

free], q) with Ly=4, 5 and find NF, tri, Ly=4, free, l=6 and NF, tri, 5, free=13.
The results are too lengthy to include here. For the reader’s convenience,
we give the Ly=4 results in the copy of this paper on the math-ph archive,
and the Ly=5 results are available from the authors. The respective loci B
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Fig. 14. Singular locus B in the q plane for fl(tri, 3 × ., free, q) for the 3 × . strip of the
triangular lattice with free boundary conditions. For comparison, zeros of the flow polyno-
mial F(tri, 3 × Lx, free, q) for Lx=21 are also shown.
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for the Lx Q . limits of these strips of the triangular lattice with Ly=4, 5
and free boundary conditions again consist of arcs.

16. STRIPS OF THE TRIANGULAR LATTICE WITH CYLINDRICAL

BOUNDARY CONDITIONS

We give the result in term of generating functions as shown from
Eq. (9.3) to Eq. (9.6). For F(tri[Ly=2, Lx=m, cyl.], q) we have

N(tri[Ly=2, cyl.], q, z)

=(q − 1)[1 − (q − 1)(q − 2)(q − 3) z] (16.1)

D(tri[Ly=2, cyl.], q, z)

=1 − (q4 − 6q3+15q2 − 19q+11) z − (q − 1)3 (q − 2) z2. (16.2)

The coefficients of the generating function for F(tri, Ly=3, Lx=m,
cyl., q) are

Atri, 3, cyl, 0=q − 1 (16.3)

Atri, 3, cyl, 1=−(q − 1)2 (2q4 − 17q3+58q2 − 97q+68) (16.4)

Atri, 3, cyl, 2=−(q − 1)4 (q − 2)(q3 − 3q2 − 4q+13) (16.5)

btri, 3, cyl, 1=−q6+9q5 − 36q4+84q3 − 127q2+125q − 65 (16.6)

btri, 3, cyl, 2=(q − 1)(q7 − 11q6+49q5 − 110q4+119q3 − 24q2 − 69q+52)
(16.7)

btri, 3, cyl, 3=−(q − 1)5 (q − 2)(q2 − 2q − 1). (16.8)

We have also calculated the generating function for F(tri[Ly=4,
Lx=m, cyl.], q). The results are too lengthy to present here, but we
mention that

deg D(tri, Ly=4, cyl.)=NF, tri, 4, cyl=6. (16.9)

17. B FOR 2D LATTICES

We can also obtain some results on Bfl, in particular, qcf values, for
(infinite) 2D lattices. These follow directly from Eqs. (3.25). Using the
relation (3.26) together with the result that qc(sq)=3, (86) we have

qcf(sq)=3. (17.1)
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Using (3.27) together with the result that qc(tri)=4, (34) we have

qcf(hc)=4. (17.2)

For the honeycomb lattice, formally, qc=(1/2)(3+`5), (36, 87) so that

qcf(tri)=
3+`5

2
=2.6180... . (17.3)

We note that two of these values of qcf for 2D lattices can also be seen as
complex-temperature roots of the equations for the phase transition points
of the Potts model on these respective lattices. For example, for the square
lattice, arguments have been given that the paramagnetic-antiferromagnetic
(PM-AFM) transition occurs at a (physical) root of the equation z2+4z/`q
+1=0, where z=v/`q. (88, 89) Evaluating this for the special case z=−`q,
i.e., v=−q, corresponding to the flow polynomial, yields q=3, the value
of qcf(sq) in (17.1). For the triangular lattice, the paramagnetic-ferromag-
netic (PM-FM) phase transition point is given by a (physical) root of the
equation z−3 − 3z−1 − `q=0; (90) evaluating this at z=−`q yields q2 − 3q
+1=0, the larger solution of which is qcf(tri) in (17.3). Since the honey-
comb lattice is dual to the triangular lattice, the corresponding equation for
the PM-FM phase transition point is obtained from that for the triangular
lattice by the replacement z Q z−1, i.e., z3 − 3z − `q=0; again substituting
z=−`q yields (q − 2) `q=0. Although the root at q=2 of this equation
is not the value of qcf(hc) as given in (17.2), it does correspond to a cross-
ing of B as shown in Fig. 7. Note that this root of the v=−q special case
of the critical equation for the honeycomb lattice is equivalent, under
duality, to a root at q=2 of the critical equation for the triangular lattice
evaluated at v=−1, corresponding to the relation (3.27). Parenthetically,
we recall that we observed that BW passes through q=2 on infinite-length
strips of the triangular lattice with periodic longitudinal boundary condi-
tions. (47, 48, 59) Similar correspondences between complex-temperatures roots
of the equations for Potts model phase transition points on 2D lattices
and properties of B have been discussed, e.g., in refs. 75, 91–97. Since
qc(kag)=3, we finally have

qcf(diced)=3. (17.4)

As was discussed in our previous works on chromatic polynomials,
from a study of the loci BW for infinite-length strips of regular lattices of
increasing widths (and with a variety of boundary conditions), one can
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formulate plausible inferences about the the boundary BW for the limit of
infinite width, i.e., the full 2D lattice. Given the duality relation (3.25), one
can use either BW or Bfl, or both, for this purpose. This program is useful
since one does not know BW for any 2D lattice except for results on the
triangular lattice (ref. 34, see, however, ref. 68). It was found in ref. 37 and
subsequent papers that if one uses periodic longitudinal boundary condi-
tions, then BW exhibits a number of features that one would infer to hold
for the 2D lattice, such as the property of separating the q plane into
various regions, and crossing the real q axis at q=0 and a maximal value, qc.
The compactness of the loci BW found for these strips is also the same as
the compactness property of BW for infinite regular lattices. This latter
property is established by taking the |V| Q . limit of a section of regular
lattice L and applying the bound (3.29). This compactness is in accord with
the fact, as discussed in refs. 42 and 43, that if BW did extend infinitely far
away from the origin, passing through 1/q=0, then this point would be
a point of nonanalyticity of the function W(L, q)/q, thereby precluding
a Taylor-series expansion of this function around this point. However,
well-known procedures exist for calculating Taylor-series expansions of
W(L, q)/q around 1/q=0 for regular lattices. (25, 26)

In contrast, as discussed above, we find that the loci Bfl for the infi-
nite-length limits of strips with periodic longitudinal boundary conditions
are usually noncompact (an exception being the case of self-dual strips of
the square lattice) and do not, in general, pass through q=0, although they
do separate the q plane into various regions. From the duality relation
(3.25) in conjunction with the bound (3.29), we infer that Bfl is compact
for any infinite regular planar lattice L that has a dual planar lattice Lg

(given the fact that a regular lattice has a fixed, finite degree for all of its
vertices). In view of this result, there are thus two possibilities: (i) either
Bfl will become compact for sufficiently great finite width for each type of
infinite-length lattice strip, or (ii) we encounter another kind of noncom-
mutativity in addition to (3.18), namely that limLy Q . Bfl(Gs, Ly × .) is
different from the accumulation set of the zeros of the flow polynomial of
an Ly × Lx section of a regular lattice obtained by letting Lx and Ly both
approach infinity with Ly/Lx a finite nonzero constant. Further study is
needed to decide which of these two types of behavior occurs. We have
already encountered the type of noncommutativity (ii) in our previous
studies of B for the Potts model free energy on infinite-length, finite-width
strips with periodic longitudinal boundary conditions; for these strips, B is
noncompact in the v plane, reflecting the fact that the Potts model has a
ferromagnetic critical point only at T=0 (i.e., K=., hence v=.) for any
width Ly, no matter how great, whereas for the 2D lattice defined in the
usual thermodynamic limit Lx Q ., Ly Q . with Ly/Lx equal to a finite
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nonzero constant, it has a ferromagnetic critical point at a finite tempera-
ture, so B is compact in the v plane.

Our present results show that the use of BW and Bfl calculated on
infinite-length finite-width strips are somewhat complementary. For
example, the study of the loci BW for finite-width, infinite-length strips of a
lattice L with periodic longitudinal boundary conditions has the advantage
that these loci are compact, as is true of BW(L)=Bfl(Lg) for the infinite
dual pair of lattices L and Lg. On the other hand, the loci Bfl for all of the
cyclic/Möbius strips of the square lattice for which we have calculated
them, do exhibit the interesting feature of having qcf equal to the value 3
for the infinite square lattice, whereas the qc values for BW on these strips
only approach the square-lattice value asymptotically as Ly increases. Of
course, for the self-dual families of planar strip graphs studied in refs. 63
and 75, Bfl=BW for each value of Ly separately, and in these cases, these
loci share the common property of being compact and having qc=qcf=3,
the asymptotic value.

18. SUMMARY

Flow polynomials continue to be of considerable interest not just in
statistical mechanics but also in mathematical graph theory and applied
areas such as engineering. For a planar graphs G they are equivalent to
chromatic polynomials on the respective dual graphs, via the relation (3.2).
In this paper we have given exact calculations of flow polynomials F(G, q)
for lattice strips of various fixed widths and arbitrarily great lengths, with
several different boundary conditions. We have determined the resultant
functions fl giving the q-flows per face in the limit of infinite-length strips.
We have also studied the zeros of F(G, q) in the complex q plane and
determined exactly the asymptotic accumulation set of these zeros Bfl,
across which fl is nonanalytic in the infinite-length limit. We found that
these loci were noncompact for many strip graphs with periodic (or twisted
periodic) longitudinal boundary conditions, in contrast to the usual behav-
ior for the analogous loci BW for the W function obtained from chromatic
polynomials for these strips. We also found the interesting feature that,
aside from the trivial case Ly=1, the maximal point, qcf, where B crosses
the real axis, is universal on cyclic and Möbius strips of the square lattice
for all widths for which we have calculated it and is equal to the asymptotic
value qcf=3 for the infinite square lattice. Duality relations were used to
derive a number of connections between fl and W, and Bfl and BW, for
planar families of graphs. Since the flow polynomial F(G, q) is, up to a
factor, the special case of the Potts model partition function Z(G, q, v) for
v=−q, as given in (2.16), the study of the locus Bfl in the limit of infinitely
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many vertices gives insight into the singular locus for the free energy of the
Potts model in the (q, v) plane.
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